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ABSTRACT: Random-effects meta-analyses are commonly performed to combine estimates of treatment effect from
different studies in the presence of heterogeneity. The method incorporates between-study variance in the overall estimate
of summary effect and its standard error. In addition to calculating the summary effect which relates to the average
treatment effect across all trials, prediction intervals have been recommended to give a range for the predicted parameter
in a new study. As both the calculation of summary effects and prediction intervals rely on the assumption that the effects
underlying different studies are normally distributed, in this manuscript we demonstrate how distribution assumption-
free weighted kernel density estimation can be used to construct a probability distribution of observed effect sizes, thus
gaining insight into the variability of summary effects. In our study, the weighted kernel density estimates are calculated
using the Gaussian kernel and the adaptive bandwidth selection process. The weights are incorporated based on five
different methods for estimating between-trial heterogeneity and sampling errors from all studies.

1 INTRODUCTION
The Institute of Medicine has defined generation and synthesis of evidence that compares the benefits and harms of
alternative methods to prevent, diagnose, treat, and monitor or improve the delivery of care as one of the key compo-
nents of comparative effectiveness research (Sox, 2010). The report specifically recommends systematic reviews and
meta-analyses for combining treatment effects from randomized clinical trials because they provide the highest level of
scientific evidence to enable health care providers to offer better care for patients (Altman et al., 2001; Higgins& Green,
2008).

In general, by synthesizing treatment effects across independent studies any meta-analysis should address three issues
related to overall treatment effects: central tendency, prediction, and variability. Central tendency relates to calculating the
expected magnitude of effects across studies and the desired confidence interval around the overall estimate. Prediction
relates to the need to explain the variability (or difference) of effect sizes across studies in terms of study level moderators,
which is commonly addressed in meta-regression and subgroup analysis. Variability itself is generally addressed with
tests of the homogeneity of effect sizes in random-effects meta-analysis (REMA), which averages treatment effects across
studies by incorporating between-trial heterogeneity into the estimates of overall treatment effect and its standard error.

In this manuscript we present kernel density estimation (KDE) for visualizing evidence in the context of REMA. The
traditional role of KDE for estimating the pattern of random variation in the data can be applied to REMA in order to
present a non-parametric distribution of treatment effects. This is particularly important for the prediction of treatment
effects in a new study where REMA commonly assumes that individual trial treatment effects vary across studies around
a normal distribution. KDE can offer distribution-free insight into the pattern of random variation in treatment effects
across studies.

2 Methods for REMA
2.1 Estimation of the Overall Population Parameter

Once the treatment effect sizes from independent studies have been extracted, the primary interest in any meta-analysis
is the estimation of the overall population parameter. Given individual study summary effectsθ1,..., θn (mean, mean
difference, relative risk, risk difference, odds ratio, hazard ratio, etc) for n studies, and their corresponding variances
σ1

2,...,σn
2, for between-study varianceτ2 a weighted estimator of the overall effectθ is given by

θ̂ =

n∑

i=1

Ŵiθ̂i

n∑

i=1

Ŵi

(1)

where

Ŵi =
1

(τ̂2 + σ̂i
2)

.
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An approximate 100(1-α)% confidence interval forθ may be obtained as

θ̂ ± Z α
2
ŜE(θ̂)

and an approximate 100(1-α)% prediction interval forθ may be obtained as

θ̂ ± tα,k−2

√
τ̂2 + ŜE(θ̂)2

wheretα,k−2 is the 100(1-α
2

) percentile of the t-distribution with k - 2 degrees of freedom. The approximate standard

error of θ̂ is given by

ŜE(θ̂) = (

n∑

i=1

Ŵi)
−0.5

The normality assumption for individual trial treatment effectsθ̂i ∼ N(θi, σ
2
i ) and for the effect in the future study

θnew ∼ N(θ̂, τ2 + SE(θ̂)2) allow for the calculation of confidence intervals and prediction intervals. However, em-
pirical evidence suggests that the normality assumption forθi may not hold. In a cohort of all National Cancer Institute
cooperative oncology groups (n = 614 trials), log hazard ratios for overall survival were not normally distributed (Djul-
begovic et al., 2008). Statistical inference in the context of REMA based solely on the estimated average treatment effect
across studies can be misleading and the accounting forτ2 is as important.

2.2 Estimation of the overall between-study variance τ2

Five different methods for the estimation of between-trial heterogeneityτ2 have been discussed in literature, namely the
Cochran ANOVA estimator (Cochran, 154), Paule and Mandel (Paule& Mandel, 1982) , DerSimonian-Laird (DerSimo-
nian & Laird, 1986) and two versions of the DerSimonian and Kacker estimates (DerSimonian& Kacker, 2007). All
estimates rely on equating the expression for the general moment generating estimate ofτ2, which is obtained by solving

n∑

i=1

ai(θi − θ)2 = E(
n∑

i=1

ai(θi − θ)2) = τ2(
n∑

i=1

ai −

n∑

i=1

ai
2

n∑

i=1

ai

) + (
n∑

i=1

aiσi
2 −

n∑

i=1

ai
2σi

2

n∑

i=1

ai

) (2)

By substituting sample variancess1
2, ..., sk

2 for σ1
2, ..., σk

2, the general method of moment estimator ofτ2 is
(Kacker& Harville, 1984):

τ̂2 =

n∑

i=1

ai(θi − θ̂)2 −
n∑

i=1

aisi
2 +
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i=1

ai
2si

2
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ai
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ai
2

n∑
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(3)

For example, to derive the Cochrane ANOVA estimator ofτ2 we assumeai = 1
k

and for the DerSimonian-Laird
estimator we assumeai = 1

si
2 . The DerSimonian-Laird estimator has been the most widely used in practice.

3 Weighted Kernel Density Estimation
Kernel density methodology aims to estimate the density function of a random variableθ from a random sampleθi without
assuming that the function belongs to a known parametric family. By constructing a non-parametric density of treatment
effects, we can gain insight into the natural variability of treatment effects across studies. Kernel density estimation (KDE)
has been applied meta-analytically in neuro-imaging studies to synthesize complex evidence of brain function (Wager et
al., 2003; Wager et al., 2007), but not in systematic reviews and meta-analysis of treatment effectiveness. Given n number
of studies and individual study treatment effectsθ1,..., θn, a weighted kernel density estimator of treatment effects is
defined as

f̂(θ) =

n∑

i=1

w(θi)Kh(θ − θi) (4)

whereKh(.) is a kernel function and h is the bandwidth which controls the smoothness of the density estimate. Essen-
tially, KDE is a continuous histogram whose blocks are centralized in each of the data points from where the density is
estimated. The kernel function defines the shapes of the peaks of the observed data so that the estimator is the sum of
the peaks. Properties of the kernel function K(u) partially determine the properties of KDE, such as differentiability and
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continuity, soKh(.) is usually chosen to be a symmetric density function; w(.) is a re-weighting function which is used
to control the roles of differentθi. In the context of REMA, w(.) is formulated to incorporate study-level sampling errors
σi and between-study heterogeneityτ2, as the true variance of individual study effects isσ2

i + τ2. This is equivalent to
weighting in standard meta-analysis as previously described.

The most important issue in KDE is the bandwidth selection. There have been several approaches to finding the
optimal bandwidth. We consider the approach based on minimizing the mean integrated square error (Rosenblatt, 1956;
Silverman, 1982) under which the approximate optimal bandwidth is given by

h = 0.9min(sw, IQRw/1.34)n−0.20 (5)

for sw = sample standard deviation andIQRw = sample inter-quartile range. A drawback of using a fixed bandwidth is
that where the data are dense will be masked or spurious noise will appear where the data are sparse. To account for data
clustering in estimating the bandwidth, the adaptive kernel density estimates can be calculated using the following three
step procedure (Silverman, 1986):

1. Find a pilot estimatêf using the bandwidth in (5)

2. Define the local bandwidth factorLi = ( g

f̂
)α, where log g =logf̂

n

3. Define the adaptive kernel estimatef̂ by

f̂ =

n∑

i=1

w(θi)

hLi
Kh(

θ − θi

hLi
)

Literature has shown that the pilot estimate in Step 1 is not that crucial.

4 Example: Do community health worker interventions improve rates of screening
mammography?

As part of a systematic review to study the effectiveness of community health workers in improving screening mammog-
raphy rates (Wells et al., 2011), REMA was performed to calculate the overall intervention effect. Community health

Favors No Intervention                            Favors Intervention

RR = 1

Study
Relative Risk (95% CI)

Allen 2001a 1.01 ( 0.97, 1.05)

Allen 2001b 1.00 ( 0.97, 1.03)

Andersen 2000a 1.00 ( 0.97, 1.02)

Andersen 2000b 1.03 ( 1.01, 1.06)

Andersen 2000c 1.05 ( 0.97, 1.14)

Andersen 2000d 1.04 ( 0.95, 1.13)

Duan 2000 1.07 ( 0.99, 1.17)

Slater 1998 1.19 ( 0.98, 1.45)

Sung 1997 1.27 ( 0.97, 1.68)

Weber 1997 2.67 ( 1.59, 4.48)

West 2004 1.19 ( 0.63, 2.25)

Calle 1994 1.44 ( 1.19, 1.75)

Margolis 1998 1.10 ( 1.02, 1.19)

Paskett 2006 1.56 ( 1.29, 1.89)

Overall (95% CI) 1.07 ( 1.03, 1.12)

−2 2 2 4Heterogeneity: τ = 0.003, I =78% , χ =60.3, df=13, (P < 10 )

Figure 1: Forest plot of comparison: intervention versus no intervention for outcome receipt of mammography. Hetero-
geneity is presented under DerSimonian and Laird method

workers are individuals trained to act as intermediaries between the patients and their health care providers and ser-
vices. The pooled relative risk of receiving screening mammography was based on 14,159 mammography events (7,107
in intervention and 7,052 in control group) in 10 randomized controlled trials (14 comparisons). Based on the results
from DerSimonian-Laird REMA of 10 randomized controlled trials (Figure 1 forest plot), the authors concluded that the
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intervention was effective and associated with statistically significant increase in the receipt of screening mammogra-
phy (Relative Risk RR = 1.07; 95% CI: 1.03-1.12, P = 5 x10−4). There was a statistically significant between-study
heterogeneity among included trials (Heterogeneity indexI2 = 78%, P< 10−6).

We performed REMA under all five estimators forτ2. The 95 percent confidence intervals, prediction intervals and
probability coverage under KDE are given in Figure 2.

CA 

DL

CA2

DL2

PM

.75 1 1.25 1.5 1.75 2 2.25 2.5
Pooled Relative Risk

Kernel Density Prediction Interval
Confidence interval

2ˆ 0 .0 3 4τ =

2ˆ 0.014τ =

2ˆ 0 .039τ =

2ˆ 0 .003τ =

2ˆ 0.054τ =

Figure 2: 95% prediction intervals, 95% confidence intervals, and 95% kernel density coverage under Cochrane ANOVA
(CA), DerSimonian and Laird (DL), Cochrane ANOVA two-step (CA2), and DerSimonian and Laird two-step (DL2),
and Paule and Mandel (PM) estimates of between-study varianceτ̂2.

All five confidence intervals were to the right of RR = 1 (point of no treatment difference), indicating the intervention
was effective in this cohort of 14 comparisons under all five estimatesτ̂2; however all five prediction intervals contained
RR = 1 indicating likelihood that the next intervention may not be effective. The KDE coverage was consistently the
widest, correctly reflecting the uncertainty and between-study heterogeneity induced by the observed intervention effects
in favor of community health workers effectiveness. The smallest estimatedτ̂2 was under the DerSimonian-Laird estima-
tion. We note that the distribution of 14 observed treatment effects on the natural log scale was not normally distributed
(Shapiro-Wilk P = 6 x10−4).

5 Conclusion

In this manuscript we presented how KDE can be implemented to compliment confidence interval and prediction interval
estimation to account for uncertainty in observed treatment effects across studies in random-effects meta-analysis. In
the absence of evidence of normality, a number of solutions have been proposed, including the t-distribution or skewed
distributions in order to reduce the effect of outlier studies (Lee& Thompson, 2008), non-parametric maximum likelihood
(Bohning, 2005) and Bayesian semi-parametric MCMC methods (Burr& Doss, 2005; Ohlssen et al., 2007). Published
literature (Higgins et al., 2009) has rightly cautioned against the use of the empirical distribution of individual trial effects
θi in the form of a histogram on the grounds that the results may be misleading due to the substantial differences among
trial sampling errors. The weighted kernel density estimation as applied to REMA correctly gives consideration to the
whole distribution of treatment effects without relying on the normality assumption for random effects.
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