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ABSTRACT: The object of the present study is to conduct a machine learning analysis for breast cancer tumor size
prediction for United States patients based on real uncensored data. Based on the result of this analysis, we will develop
a statistical model with only important variables. We accomplish the objective by developing a high quality statistical
model that identifies the significant attributable variables and interactions. We rank these contributing entities according
to their percentage of the contribution to breast cancer tumor growth. We used this new machine learning way to help us
update one of previous model which is developed through classical modeling method. This proposed statistical model can
be used to conduct surface response analysis to identify the necessary restrictions on the significant attributable variables
and their interactions to minimize the size of the breast tumor. One can also use the proposed model to make early
prediction of tumor size based on the most attributable variables.

1 INTRODUCTION

Wikipedia [20] (the online encyclopedia) defines breast cancer as: a cancer that starts in the breast, usually in the inner
lining of the milk ducts or lobules. There are different types of breast cancer, with different stages (spread), aggressive-
ness, and genetic makeup.

The proposed model that we are developing includes individual variables and interactions. The response variable we use
to develop this statistical model is the tumor size at diagnosis for breast cancer patients. We have included 26 possible
attributable variables for breast cancer, namely, X1, X2,..., X26. For instance, X1 stands for patient ID and X2 stands for
the patients age (in years) when he/she got the diagnosis. The full list of attributable variables is in Table 1.1, below. In
this research, we would like to find the relation between the tumor size and all other attributable variables. We cannot use
survival time to predict the tumor size since death time happens after the tumor is detected. Therefore, we exclude the
variable survival time(x25) and the censoring indicator function vss (x26) in the first part of study. Thus, we have only
24 variables left to construct our statistical model. Due to similar reasons, we have to exclude variable x23, COD (Cause
of Death) since we do not possess this information when the diagnosis of tumor happens. Therefore we will use only 23
variables for our study.

Findings from multiple studies have demonstrated that one result of participation in quality childcare programs is im-
provement in children’s receptive and expressive language skills (Goelman & Pence, 1987; Howes, 1997; McCartney,
1984). It is therefore of great importance that childcare providers are knowledgeable about and have the skills to stimulate
and promote language development in their centers. According to Mroz and Hall (2003), however, only 16% of early
childhood providers believe that they have received adequate training in the area of child language to provide quality
services in this developmental domain. Forty-six out of fifty childcare providers who were interviewed expressed a need
for training specifically in the area of speech and language. The providers noted that ideal content for this training would
consist of identification of children with speech and language difficulties within the context of a basic introduction to
speech and language development (Mroz & Hall, 2003).

In the present analysis, we used real data from the Surveillance Epidemiology and End Results (SEER) Program. SEER
collects and compiles information on incidence, survival, and prevalence from specific geographic areas representing
about 26 percent of the U.S. population plus cancer mortality for the entire U.S. [19].

The proposed statistical model is useful in predicting the tumor size given data for the attributable variables. It is statis-
tically evaluated using R square, R square adjusted, the PRESS statistic and several types of residual analyses. Finally,
its usefulness is illustrated by utilizing different combinations of the attributable variables. We use one popular machine
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learning method: random forest to help us select the attributable variables and then construct the statistical model based
on that. In addition, the attributable variables are ranked according to their contributions to accurately estimate a patients
tumor size.

2 HISTORICAL REVIEW

Survival analysis is used more and more in the areas such public health, medicine, medical research, financial research,
etc. Many researchers have made signficiant contributions to this subject. For example, C. A. McGilchrist, [15], [16]
discussed the regression with frailty in survival analysis. D. R. Cox, [4] introduced the Cox proportional hazards (PH)
model for survival data. E. L. Kaplan and P. Meier, [10] constructed Kaplan Meier empirical type of survival model. E.
A. Gehan developed the generalized Wilcoxon test and this test is more powerful than the Cox proportional hazards test
when the proportional hazard assumption is violated early on. K. Liu and C. P. Tsokos, [11], [12], [13] utilized kernel
density methods in reliability analysis. N. Mantel and W. Haenszel, [14] proposed the Mantel Haenszel test for survival
analysis. P. Qiu and C. P. Tsokos studied extensively the accelerated life testing model. Y. Xu and C. P. Tsokos, [23]
probabilistically discussed and evaluated several most commonly used survival analysis models. Y. Xu and C. P. Tsokos,
[21] use classical statistical modeling method construct a statistical model and ranked the contribution of the important
variables. After we have the result from the machine learning, we will compare our result with this paper [21] and
proposed a modified version of the statistical model.

Some classical historical research papers can be found in [5], [7], [10] and [17]. Other important and recent references
for the readers who will have an interest in survival analysis may be found in [2],[3],[6], [8], [18] and [22].

Table 1.1 List of attributable variables

Name Full name of variables Short form
X1 Patient ID id

X2 Age at diagnosis age
X3 Year of Birth birthy
X4 Birth Place birthp
X5 Sequence Number Central snc
X6 Month of diagnosis month
X7 Year of diagnosis year
X8 Primary Site ps
X9 Laterality la
X10 Histologic Type ICDO3 ht
X11 Behavior Code ICDO3 bc
X12 Type of Reporting Source trs
X13 RXSumm SurgPrimSite rxps
X14 RXSumm Radiation rXr
X15 RXSumm RadtoCNS rxcns
X16 Age Recode Year olds ager
X17 Site Recode st
X18 CSS chema css
X19 AJCC stage 3rd edition ajcc
X20 First malignant primary indicator findi
X21 State-county recode scr
X22 Race race
X23 Sex sex

3 DEVELOPMENT OF THE NONLINEAR STATISTICAL MODELS

We randomly extract 155 uncensored breast cancer patients information from SEER data base. The data was obtained
from 2000 to 2006. We want to develop a statistical model with full information instead of censored. Therefore, we will
use the 155 uncensored patients information to construct our statistical model.

We proceed to develop a statistical model taking into consideration the twenty three attributable variables listed in Table
3.1. The form of the statistical model is given by tumor size as a function of (x1, x2, , x23). Note that some of the variables
values are obtained after the tumor size is recorded. In our analysis all the patients in the data base have breast cancer. We
utilize the values of the tumor size once the patient has gone through a diagnostic process. Thus, the general statistical
form of the proposed model with all possible attributable variables and interactions will be of the form in equation 3.1.

TS =ao+a1Ar +acAs+ -+ Ai+ J1B1+ B+ -+ 3;Bj + € 3.1
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Here, TS stands for tumor size, the o and 3 are the coefficients, and A is the first order term of the attributable variables
and B are the possible interactions and higher order terms. The object is to develop the most representative estimate of
the above model based on available data.

Here variable x 19 AJCC refers to the 3rd edition of the AJCC cancer staging manual from American joint committee on
cancer and we use the same standard for all patients that we have.

One of the basic underlying assumptions in formulating an estimate of the above statistical model is that the response
variable should be Gaussian distributed. Unfortunately, in the present form that is not the case. This fact is clearly
demonstrated by the QQ plot shown by Figure 3.1, below.
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Figure 3.1 QQ Plot for Testing Normality for Original Data
Furthermore, the Shapiro-Wilk normality test with the necessary calculation of the test statistic W = 0.7437 and p-value
= 3.787e-15 is additional evidence that the tumor size does not follow normal probability distribution. We proceed in
utilizing the Box-Cox transformation to the tumor size to determine if such a filter will modify the given data to follow
the normal distribution so that we can proceed to formulate the proposed statistical model. After we applied the
Box-Cox transformation, we can use the transformed tumor size as our new response variable. Thus, we can proceed to
estimate the coefficients of the attributable variables for the filtered transformed tumor size data to obtain the coefficient
of all possible interactions and at the same time determine the significant contributions of both attributable variables and
interactions.

‘We begin with the previously defined twenty-three attributable variables x1, x2, . . . , x23 and more than two hundred
2nd and 3rd order interaction between each pair, and we did not consider any 4th and higher order interactions due to the
initial research from previous study [21]. Since we already have a lot more terms than patients in the data itself, we
utilized sub modeling skills and two way selection procedures to construct our model.

We divided the tumor size into two different categories: small for tumor size less than 20 mm and large if the tumor size
is greater or equal to 20mm. We further divided our data into two sub data set. The first data set is randomly selected
from the original data set and it has about 60% of the original data set. We call it as train data set and we will use it to
build our random forest models. The second data set is the remaining data set from the original and we call it test data
set. We will use test data set to run our random forest model and check the goodness of the prediction. From table 3.1,
below, we can see the estimation error rate is about 20% and Out of Bag (OOB) estimate of error rate is 21.51%. It
shows that our random forest estimation has a high accurate rate on discrimination.
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Table 3.1 Confusion Matrix

Size Large Small Class.error
Large 37 9 1957
Small 11 36 .2340

To develop the models, initially we start building our model with random forest process with up to 500 trees. From
Figure 3.2, below, we can see with 200 trees we have had a stable error rate. Therefore, we will use 200 trees to develop
our models. The green dot plot is for big tumor group. The dash red plot is for small tumor group and black solid plot is
for combined group.
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Figure 3.2 Breast Cancer Data random forest tree plot

From Figure 3.3, blow, we can see as the mean square analysis show, the number of predictors should not more than 10
as the error will not further decrease when we have more variables enter the random forest analysis. Therefore we will
keep our number of variables as 10 for each trail.
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Figure 3.3 Number of variables at each split in random forest analysis
Figure 3.4, below, give us the important attributable variables that are selected by random forest process. Based on both
methods, we decide to pick the following 10 attributable random variables to construct our model: AJCC(X19),
YEAR(X7), AGE(X2), BIRTHY(X3), MONTH(X6), SNC(X5), ID(X1), SEX(X23), RXR(X14) and RXPS(X13). Out
of these random variables, AGE, BIRTHY are related and they refer to the current age of the patients. Therefore, we will
combine these effects and use only one variable AGE to represent the patients actual age. With similar reason, variables
Month and Year are both used to represent the age when patients make the initial diagnosis. This age is quite different
from their current age. To reduce the dependence of the variables, we will only keep variable Year alone. SEX and ID
are nuisance factors. So the final variables that we want to keep are AJCC(X19), YEAR(X7), AGE(X2), SNC(X5),
RXR(X14) and RXPS(X13). Compared this result with research [21], we can see the previous study suggest RXR(X14),
COD(X23), RXPS(X13), SNC(X5) and AJCC(X19) as most significant variables which is almost identical with our
finding here. The only new variables that we find are YEAR and AGE.

We first construct an initial model with no interactions and just first order terms as the following: AJCC(X19),
YEAR(X7), AGE(X2), SNC(X5), RXR(X14) and RXPS(X13). After the initial model that we constructed, we dis-
play the tree with our model. From Figure 3.5, below, we can observe the error rate indeed converge toward low rate
when the numbers of trees approach 200 as what we expected before.
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Figure 3.4 Important attributable random variables from random forest analysis
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Figure 3.5 Error rate vs number of trees from random forest analysis

There are several missing values in the variable AJCC. We use the mean of the rest of the data value in the variable
AJCC to replace the NA value in order to perform prediction of the model. We add interaction term into our model and
redo the random forest analysis. HT(X10) is not considered as significant variable in our initial study. However, after

our random forest analysis for interactions, we found the same three most significant interaction terms as our previous
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research [21]. Therefore we will include HT in our model even with none significant first order term but as significant
higher order term. After we figure out all the single term and high order term, we perform a classical regression method
to identify all the estimates of the coefficients of our random variables. Thus, the results of estimation of equation 3.1
are given by equation 3.2 as follows

— 0.2659

In(TS ) =88.51 —2.16% 10 ° Xy — 2.85% 107> X5 + 4.57 * 10 X7 — 2.61 % 10" X1,
—|—41 * 10_3X13 — 324X14 + 3.1 % 10_3X19 + .24X14 * X19 =+ 1.86 * 10_4X5X10X14 — 0.119X5X14X19

(3.2)

Where X2 is AGE, X7 is YEAR, X5 is SNC, X10 is HT, X13 is RXPS, X14 is RXR and X19 is AJCC.

Here we keep HT even it is not significant individually. But we still keep it because HT is included in interaction terms.
We will utilize the initial transformation that we used to transform the response data to get the result in equation 3.3 by
taking the exponential on both sides of the 3.2 and then take 3.76s power on both sides of the equation 3.2.

TS = exp(88.51 — 2.16 % 107> X5 — 2.85 % 1072X5 + 4.57 x 107 2X7 — 2.61 % 10> X1
+4.1%10 % X153 — 3.24X 14 + 3.1 % 10 X194 24X 14 * X109+ 1.86 % 10 * X5 X 10X 14 — 0.119X5 X 14X 10)>"°

(3.3)

For our final model, the R squared is .894 and the previous final models R square is 0.889. The R squared adjusted of
our final model is 0.887 and the previous final models R square adjusted is 0.881. We can see our model is comparable
with the previous research results [21]. Both R squared value and R squared adjusted value are high (close to 90%) and
these two values are very close to each other. This shows our models R squared increase is not due to the increase of the
parameters estimates, but rather the good quality of the proposed model to predict tumor size given values of the
identified attributable variables [1]. Secondly, the prediction of residual error sum of squares (PRESS) statistics evaluate
how good the estimation is when we remove one data point at a time. We will choose the model that has the smallest
PRESS statistics. The PRESS statistics results support the fact that the proposed model is of high quality. Our current
models PRESS value is 89.25479 while previous final models PRESS value is 96.73797 which show obvious
improvement.

Furthermore, we compared the Akaike Information Criterion (AIC) of our proposed model and our previous final model.
Our current models AIC is 39.77 and our previous final models AIC is 46.35 which show significant improvement as
well.

In Table 3.4 we have listed all the important attributable variables and interactions. We notice some variables are not
significant by themselves but we still include them. For example, X5 and X10 are not significant by themselves, only in
combination with the others. We summarize the attributable variables individually and interactively in the following
schematic network as showed in Figure 3.6.

Table 3.4 List of Attributable Variables

No lndl.wdual Name of individual variables
variables
1 X2 AGE of patients
2 X5 Sequence Number Central
3 X7 Year of diagnosis
4 X13 RXSumm SurgPrimSite
5 X14 RXSumm Radiation
6 X19 AJCC stage3 rdedition
Interactions
7 X14:X19 RXR N AJCC
8 X5:X10:X14 SNC N HT N RXR
9 X5:X14:X19 SNCN RXR N AJCC

We summarize the attributable variables individually and interactively in the following schematic network as showed in
Figure 3.6.
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Figure 3.6 Breast Cancer Attributable Variable Diagram
In Table 3.5 are the ranks of the most top ten most significant attributable variables with respect to their contribution to
estimating tumor size. The interaction among X5, X14 and X19 ranks as the top one. This is the interaction among the
sequence number central(SNC), RXsumm Radiation(RXR) and AJCC stage3 rdedition(AJCC) [1].

Table 3.5 Rank of Variable According to Contributions

Rank | Variables

1 X5:X14:X19
2 X14:X19

3 X5:X10:X14
4 X19

5 X2

6 X7

7 X5

8 X13

9 X14

10 X10

4 USEFULNESS OF THE PROPOSED STATISTICAL MODEL

We can conclude from our extensive statistical analysis that there are only five significant attributable variables to the
tumor size for breast cancer namely, YEAR(X7), AGE(X2), RXR(X14), RXPS(X13) and AJICC(X19). As for SNC(X5)
and HT(X10), they themselves individually do not significantly contribute to the response variables; however, when they
interact with other variables, they do significantly contribute to the response variable. Compare with previous study [21],
we found two new attributable variables, namely, Age and Year. Furthermore, we also tested higher order interaction
terms of the attributable variables and we found three interactions to significantly contribute to tumor size for breast
cancer.

This model is useful for a number of reasons.

1. It can be used to identify the significant attributable variables which might contribute to the form of the tumor in
breast.
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2. It identifies the significant interactions of these attributable variables which might contribute to the interaction effects
in breast cancer.

3. The most significant variables that contributions to the tumor size growth are ranked.

4. One can also use the proposed model to generate various scenarios of the tumor size as a function of different values
of the subjective entities.

5. A confidence interval for the tumor size can be constructed with parametric analysis. By obtaining the % confidence
limits for the response, we can describe how confident we are that our estimate is close to the actual tumor size.

6.The model as shown in equation (3.3) can be used to perform surface response analysis to place the restrictions on the
significant attributable variables and interactions to minimize the breast cancer tumor size. We can also put restrictions
on the variables to minimize the response of the tumor size using nonlinear control methods.

S CONCLUSIONS & DISCUSSION

In the present study, we performed random forest analysis followed by a parametric analysis to estimate tumor size for
breast cancer patients. The initial measurement of tumor size was collected from the SEER database. Those data do not
follow normal probability distribution. Using the standard Box-Cox transformation, the SEER tumor size data became
approximately normally distributed. We conducted machine learning method random forest analysis to select the most
significant attributable variables. We developed a nonlinear statistical model based on these significant attributable
variables. Through the process of developing the statistical model, we found only five variables, namely, YEAR(X7),
AGE(X2), RXR(X14), RXPS(X13) and AJCC(X19) and three interactions that significantly contribute to the tumor size.
The proposed statistical model was evaluated using the R-square, R-square adjusted, PRESS statistics and AIC methods,
all of which support the high quality of the developed statistical model. We compared our model with previous research
[21] and find significant improvement. This model can be used to obtain a good estimate of tumor size knowing the
significantly attributable variables and interaction terms.
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