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ABSTRACT: An exporter is invariably exposed to a currency risk due to unpredictable fluctuations in the exchange
rates, and it is of paramount importance to minimize risk emanating from these forex exposures. In this paper, we present
optimal static currency hedging strategies in which Forward FX contracts are used as hedging instruments. First, we
introduce a static trading strategy and present the analytical expressions for different risk measures such as Value-at-
Risk (VaR), Conditional Value-at-Risk (CVaR), Probability of Loss, and Conditional Expectation of Loss. The results
presented here make no implicit assumptions about the underlying probability distribution. Next, using the expressions
for risk measures we derive optimal static hedginging strategies to minimize these risk measures. Finally, we illustrate
the results by specializing the underlying model to the case of geometric Brownian motion.

1 Introduction
Exposure to foreign exchange (FX) risk (Stephens, 2001; Xin, 2003) arises when companies conduct business in multiple
currencies. A typical scenario such a company encounters may involve a future receivable in foreign currency (FC) for
some service/goods the company exported. The FC thus received needs to be converted to home currency (HC) at some
predetermined time. However, due to uncertain fluctuations in exchange rates, the company may incur huge losses (or
reduced profits) at the time of conversion. Specifically, if the value of the HC appreciates against FC by the conversion
date, then the company will receive less HC. On the other hand if FC appreciates then the company will profit from
the exchange rate fluctuation. Since the direction and magnitude of these fluctuations are uncertain the exchange rate
is justified to be classified as a risk. Furthermore, the magnitude of such fluctuations are significant enough to affect
the company’s profit and loss. The subject of analysis and mitigation of such financial risk factors comes under risk
management (Alexander, 2009; Dowd, 2005; Jorion, 2006; Holton, 2003) and the specific case of exchange rate risk
comes under currency risk management (Stephens, 2001; Xin, 2003).
Risk management consists primarily of an accurate analysis of the risk factors involved (FX rate, in this case) and take
appropriate action to mitigate the risk. Any such action is known as hedging. There are many alternatives available to the
company for hedging including conversion of FC to HC at an appropriate time or enter into different hedging contracts
with some financial institution. Such contracts may involve FX instruments (also known as hedges) such as forwards,
futures, swaps, and a variety of FX options (Stephens, 2001; Xin, 2003). Specifically, a FX forward is an agreement
between the two parties to exchange currencies, namely, to buy or sell a particular currency at a predetermined future date
and a predetermined exchange rate. It costs nothing to enter a forward contract. The party agreeing to buy the currency
in the future assumes a long position, and the party agreeing to sell the currency in the future assumes a short position.
The price agreed upon is called the delivery price, which is equal to the forward rate at the time of initiation of the
contract. An option sets a rate at which the company may choose to exchange currencies. If the exchange rate at option
maturity is more favorable, then the company will not exercise this option. Forward FX contracts are considered to be
the simplest and the most widely used instrument for currency hedging. Their popularity may be partially explained by
their simplicity, their initial zero cost, and feasibility of over-the-counter (OTC) trading that permits exact specifications
regarding dates and amounts. For a general introduction to various (equity-based) financial instruments and their utility
in hedging, see (Wilmott, 2007; Hull, 2008).
A hedging strategy represents a trading strategy involving different types of hedges that can reduce currency risk. The
hedging strategy typically depends on information such as exchange rate fluctuations and possibly a predictive model
for the exchange rate (the so called market view). These hedging schemes involve forward-rate based transactions to
essentially lock in future exchange rate. Suppose a company is expecting a certain amount of FC at a future date. The
company has a choice of doing nothing (no hedging), enter into a hedging contract once (static hedging), or enter into
multiple contracts at different times (dynamic hedging). The choice depends on various reasons including the companies
view on the market and service costs to enter hedging contracts. If the company can eliminate or achieve minimum
possible risk using no hedging or static hedging then dynamic hedging offers no advantage. However, in highly volatile
periods, dynamic hedging may achieve significantly less risk compared to static hedging. See (Wilmott, 2007; Hull,
2008) for a detailed introduction to hedging.
In summary, the first step in a risk management process to derive a predictive model for the FX rate. The next step
is to identify an appropriate risk measure/metric (Artzner et al., 1999; Alexander, 2009; Dowd, 2005; Rockafellar and
Uryasev, 2000), a number that can be used to quantify or summarize the effect of the risk from the companys exposure
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to FC. There are many risk measures available to quantify such risk exposure. In this paper, we consider six measures
of risk including the expectation, the variance, the probability of loss, the value-at-risk, the condition expectation, and
the conditional value-at-risk. Note, that these risk metrics try to capture the effect of the randomness of the risk factors
on profit and loss and hence computation of risk metrics will involve probability-based methods. The final step in this
process is to determine an optimal hedging strategy. An optimal hedging problem is a constrained optimization problem
that minimizes a risk metric over a feasible set of decision variables, which are typically used to update the hedging
portfolio.
Currency risk hedging continues to remain an active area of research (Stephens, 2001; Xin, 2003; Gagnon et al., 1998;
Lypny and Powalla, 1998; Campbell et al., 2010; Glen and Jorion, 1993; Chang, 2011). Most of the existing literature
focuses on specific risk measures such as variance or conditional value-at-risk (Topaloglou et al., 2002). However,
(Volosov et al., 2005; Bhatia et al., 2012) focuses on variety of risk measures which relies on Monte Carlo simulations.
In this paper, we present the problem of designing risk-optimal discrete-time hedging strategies for a given risk measure.
Here, our primary focus is on optimal static hedging problem using Forward FX contracts as a hedging instrument
although the overall methodology can easily be extended to include other instruments.

2 Notation
In this section, we introduce the notation used in this paper. Let R (R+) denote the set of (positive) real numbers. Next, let
(Ω,F,P) be a probability space, where Ω is a measurable space, F is a σ−algebra on Ω, and P is a probability measure
on (Ω,F). Let L(Ω,F,P) be the set of integrable random variables on (Ω,F,P). Given X ∈ L(Ω,F,P), E[X] and
var(X), denote the expectation (or the expected value) of X and the variance of X , respectively (under the measure P).
For an event F ∈ F, we use 1F (ω) (or 1ω∈F (ω)) to denote the indicator function defined by

1F (ω) =

{
1, ω ∈ F,
0, otherwise.

Next, for F ∈ F, we use E[X|F ] to denote the conditional expectation of X given the event F defined by

E[X|F ] =
E[X1F (ω)]

E[1F (ω)]
=

E[X1F (ω)]

P(F )
.

Note it is standard to define events in terms of inequalities involving some random variable X . For example, F = {ω ∈
R : X ≥ 0} denotes the event where X ≥ 0. In this case, we denote F as X ≥ 0 and the corresponding indicator
function as 1X≥0 where the dependence on ω is implicit. In this case, we write P(X ≥ 0), 1X≥0, and E[X|X ≥ 0] to
denote P(F ), 1F (ω), and E[X|F ], respectively. Furthermore, for a given continuous random variable X , we denote its
probability density function by fX(x) and its probability distribution function by FX(x). Finally, we use Φ(x) and φ(x)
to denote the standard normal distribution function and its corresponding density function, respectively.

3 The Loss Random Variable under a Static Hedging Strategy
Consider a company that is expecting a foreign currency ofN ∈ R+ units at a future time T ∈ R+ (we denote the current
time to be T0(< T )) where T0 ∈ R, T0 ≥ 0). Furthermore, we assume that the company has an obligation to pay NB
units of HC at time T , where B ∈ R+ is the budget rate. Typically the budget rate B is determined by the company once
a year based on many factors such as costs and profit expectations. Let us denote by Xt the exchange rate in number of
HC units for one unit of FC at time t ∈ R+. If the company converts all the FC into the HC at time T then the loss ψT at
time T is given by

ψT = N(B −XT ). (1)
This represents the no hedging strategy where a positive ψT represents a loss and a negative ψT represents a profit. Note
that if ψT is beyond the allowable limits then the company has to employ a hedging strategy to manage its risk exposures.
In this paper, we consider only those hedging strategies that involve setting up a hedging portfolio of liquid Forward FX
contracts.
Consider a hedging portfolio that consists of the positions in FX forward contracts only. We assume that all of these
contracts are initiated at time T0 with an expiration at a future time T . We further assume that we can make changes to
this hedging portfolio only at the discrete times 0 = T0 < T1 < · · · < Tn = T by including the new positions of these
contracts within the hedging portfolio. Let Fk,T , k ∈ {0, . . . , n− 1} denote the spot forward FX price (or forward rate)
at time Tk ∈ R+ of a forward contract which is initiated at time T0 and matures at T . Let ζk ∈ R represent short position
in FX forward contract bought at Tk, k ∈ {0, . . . , n − 1}. This arrangement allows the company to sell FC currency at
an exchange rate of Fk,T at time T . At the next time Tk+1, ζk+1 units of this contract, with a forward rate of Fk+1,T ,
are bought. At T , all of the FX forward contracts held in the hedging portfolio mature and generate a combined payoff
of
∑n−1
i=0 ζiFi,T and any remaining N −

∑n−1
i=0 ζi units of FC are then spot traded at XT . Under these trading rules the

loss from this hedging portfolio will take the form

ψT = NB −

(
n−1∑
i=0

ζiFi,T + (N −
n−1∑
i=0

ζi)XT

)

= NB −

(
n−1∑
i=0

ζi(Fi,T −XT ) +NXT

)
. (2)
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The expression in (2) represents a loss from discrete time dynamic hedging strategy. In this paper, we restrict our attention
to a static hedging strategy where the company can invest only once, at time T0, in the FX forward contracts and hold the
portfolio till T . Under the static trading assumption, ζk = 0, for k ∈ {1, . . . , n− 1}. Then the loss in (2) will specialize
to

ψT = NB − (ζ(F0,T −XT ) +NXT )

= NB − ζF0,T − (N − ζ)XT . (3)

where ζ
4
= ζ0. In (3), the company is buying ζ units of the forward contract at forward rate F0,T . This arrangement

allows the company to sell FC currency at an exchange rate of F0,T at time T . By locking into a forward contract to sell
FC, the company sets a future exchange rate without any additional cost. The remaining (N − ζ) units of FC is then
exchanged at T (at spot rate). Using this strategy, the company now has a choice of i) covering all the N units of FC, that
is, entering into ζ = N forward contracts each of unit value, ii) covering none of the FC (the no hedging or the (trivial)
static hedging strategy with ζ = 0), or iii) cover ζ 6= N units of FC. The hedging portfolio is said to be under-hedged if
ζ < N , fully-hedged if ζ = N , and over-hedged if ζ > N .
Since the loss ψT is a function of the random variableXT it follows that ψT is also a random variable and the distribution
of ψT is induced byXT . Now, we assume that the underlying variableXT is a continuous random variable with a known
probability distribution function FXT . The following result relates the distribution and the density functions of the loss
function in (3) with FXT .

Proposition 3.1. Consider the loss random variable ψT given by (3) under a static hedging strategy defined by ζ. Then
the probability distribution function of ψT ,is given by

FψT (x) =


1− FXT

(
NB−ζF0,T−x

N−ζ

)
, x ∈ R, ζ < N,

FXT

(
NB−ζF0,T−x

N−ζ

)
, x ∈ R, ζ > N,

1, x ≥ N(B − F0,T ), ζ = N
0, x < N(B − F0,T ), ζ = N.

(4)

Furthermore, if XT has a probability density function then for ζ 6= N , ψT has a probability density function given by

fψT (x) = 1
|N−ζ|fXT

(
NB−ζF0,T−x

N−ζ

)
, x ∈ R, ζ 6= N. (5)

Proof. Let x ∈ R. Note that

FψT (x) = P(ψT ≤ x)

= P (NB − ζF0,T − (N − ζ)XT ≤ x)

= P ((N − ζ)XT ≥ NB − ζF0,T − x) (6)

where the second equality follows from (3). If ζ < N then (6) yields

FψT (x) = P
(
XT ≥

NB − ζF0,T − x
N − ζ

)
= 1− FXT

(
NB − ζF0,T − x

N − ζ

)
and if ζ > N then

FψT (x) = P
(
XT ≤

NB − ζF0,T − x
N − ζ

)
= FXT

(
NB − ζF0,T − x

N − ζ

)
.

Finally, if ζ = N then ψT is deterministic and has the value N(B − F0,T ). This completes the proof of (4).
It is clear from (4) that in the cases where ζ 6= N , the cumulative distribution function of ψT is differentiable if FXT is
differentiable. Differentiating (4) for case ζ 6= N yields (5).

4 Expressions for Measures of Risk due to the Loss
In this section, we develop expressions for a variety of measures of risk due to loss. In this paper, we define a risk
measure of a random variable as a real value function of the random variable to measure the risk of that random variable.
Specifically, we consider six measures of risk including the expectation, the variance, the probability of loss, the value-
at-risk, the condition expectation, and the conditional value-at-risk.
The following result provides expressions for the expectation and the variance of the loss (3).
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Proposition 4.1. Consider the loss random variable ψT given by (3) under a static hedging strategy defined by ζ. Then
the expected loss E[ψT ] is given by

E[ψT ] = NB − ζF0,T − (N − ζ)E[XT ] (7)

and variance of the loss var(ψT ) is given by

var(ψT ) = (N − ζ)2var(XT ). (8)

Proof. (7) and (8) follow from (3) by applying standard rules of E[·] and var(·).
Next, we consider the risk measure given by probability of loss. This measure assigns number denoting the probability
that loss exceeds a prescribed level. The following result provides the expression for the probability of loss given by (3).

Proposition 4.2. Consider the loss random variable ψT given by (3) under a static hedging strategy defined by ζ. Then,
for θ ∈ R, the probability of loss P(ψT > θ) is given by

P(ψT > θ) =


FXT

(
NB−ζF0,T−θ

N−ζ

)
, ζ < N

1− FXT

(
NB−ζF0,T−θ

N−ζ

)
, ζ > N

0, θ ≥ N(B − F0,T ), ζ = N
1, θ < N(B − F0,T ), ζ = N.

(9)

Proof. Note that P(ψT > θ) = 1− FψT (θ) so that (4) implies (9).
Risk management has received much attention from practitioners, regulators and researchers in the last few years. Value-
at-Risk (VaR) has emerged as a popular risk measurement tool among practitioners and regulators. In general, for a
given confidence level α ∈ (0, 1), VaR can be described as the maximum likely loss to occur in (1 − α)% of cases.
For example, a bank might claim that its weekly VaR of the trading portfolio is $50 million at the 99% confidence level.
In other words, over the course of the next week, there is a 99 percent chance that the bank will not lose more than $50
million. Alternatively, there is 1% chance i.e. only 1 chance in a 100, for a loss greater than $50 million to occur.
Mathematically, for a given confidence level α ∈ (0, 1) and a loss random variable Y , the VaR of the portfolio at the
confidence level α is given by the smallest number y such that the probability that the loss Y exceeds y is at most (1−α).
That is,

VaRα(Y ) = inf {y ∈ R : P(Y > y) ≤ 1− α} (10)

If we assume that the loss random variable Y has an associated probability distribution function FY . Then the VaR in
(10) can be written as

VaRα(Y ) = inf {y ∈ R : FY (y) ≥ α}

Under the assumption that FY (y) is continuous and strictly increasing, the infimum in (10) is attained and there exists y
such that FY (y) = α.

Remark 4.1. VaRα(Y ) is also considered as the α-quantile of the FY , that is,

VaRα(Y ) = F−1
Y (α). (11)

Remark 4.2. The confidence level α in (10) is usually 95% or more. When α ∈ (50%, 100%), then it is easy to observe
that VaR1−α(Y ) < VaRα(Y ).

The following result provides the expression for the VaRα for the loss given in (4).

Proposition 4.3. Consider the loss random variable ψT given by (3) under a static hedging strategy defined by ζ. Then,
for α ∈ (0, 1), VaRα(ψT ) is given by

VaRα(ψT ) =

{
NB − ζF0,T − (N − ζ)VaR1−α(XT ), ζ ≤ N
NB − ζF0,T − (N − ζ)VaRα(XT ), ζ ≥ N. (12)

Proof. (12) follows from (4) by noting that VaRα(ψT ) = F−1
ψT

(α).
VaR though possess certain attractive properties, however, lacks certain features which undermines its applicability in
many problems. For example, VaRα is a number that defines a level of loss that one is reasonably sure will not be
exceeded. However, it tells us nothing about the extent of the extreme losses that could be incurred in the event that VaR
is exceeded. Conditional Value-at-Risk (CVaR) provides the information about the average level of loss, given that VaR
is exceeded. Mathematically, for a given confidence level α ∈ (0, 1) and a random variable Y , the CVaR is defined as

CVaRα(Y ) = E[Z|Z > VaRα(Y )]. (13)

Since (13) is a conditional expectation, CVaR can be obtained by dividing the probability weighted average of the random
variable Y that is greater than VaRα(Y ) by P(Y > VaRα(Y )). But P(Y > VaRα(Y )) = 1 − α. Hence, if the loss
random variable Y has a probability density function fY , then CVaR is given by

CVaRα(Y ) =
1

1− α

∫ ∞
VaRα(Y )

yfY (y)dy. (14)
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By definition, CVaR can never be less than the VaR. The difference between the CVaR and the corresponding VaR
depends on the heaviness of the left tail of the loss distribution. The heavier this tail, the greater the difference. Clearly,
CVaR measure gives a better description of the risks of a portfolio than just reporting the VaR.
We can also define CVaR by using the definition of conditional expected loss. The conditional expected loss can be
defined as a mean loss which is above some prescribed loss level. Mathematically, for some level θ ∈ R and a continuous
loss random variable Y , the conditional expected loss is defined as E[Y |Y > θ]. Using (13), the CVaR can be defined in
terms of E[Y |Y > θ] by replacing θ with VaRα(Y ). In the following result, we present an expression for the conditional
expected loss for a loss variable ψT in (3). Subsequently, we will use this result to specialize to CVaR.

Proposition 4.4. Consider the loss random variable ψT given by (3) under a static hedging strategy defined by ζ. Then,
for θ ∈ R, the conditional expected loss E[ψT |ψT > θ] is given by

E[ψT |ψT > θ] =

{
ϑ− N−ζ

FXT
(κ)

E[XT 1{XT≤κ}], ζ ≤ N
ϑ− N−ζ

1−FXT
(κ)

E[XT 1{XT≥κ}], ζ ≥ N. (15)

where ϑ = NB − ζF0,T and κ = ϑ−θ
N−ζ .

Proof. Note that the loss variable ψT in (3) is given by

ψT = NB − ζF0,T − (N − ζ)XT ,
= ϑ− (N − ζ)XT .

Now, note that if ζ = N then ψT > θ if and only if ϑ > θ. Furthermore, if ζ = N (ζ > N ) then ψT > θ if and only if
XT < κ (XT > κ). Hence, the conditional expectation E[ψT |ψT > θ] is given by

E[ψT |ψT > θ] =

{
ϑ, θ < ϑ
0, otherwise.

,

if ζ = N ,

E[ψT |ψT > θ] = E[ϑ− (N − ζ)XT |XT < κ]

= ϑ− N − ζ
FXT (κ)

E[XT 1{XT≤κ}],

if ζ < N , and

E[ψT |ψT > θ] = ϑ− N − ζ
1− FXT (κ)

E[XT 1{XT≥κ}],

if ζ > N , which completes the proof of (15).
The following result specializes (15) to CVaR(ψT ).

Corollary 4.1. Consider the loss random variable ψT given by (3) under a static hedging strategy defined by ζ. Then,
for α ∈ (0, 1), CVaRα(ψT ) of the loss is given by

CVaRα(ψT ) =

{
NB − ζF0,T − N−ζ

1−α E[XT 1{XT≤VaR1−α(XT )}], ζ ≤ N
NB − ζF0,T − N−ζ

α
E[XT 1{XT≥VaRα(XT )}], ζ ≥ N.

(16)

Proof. The result is a direct consequence of (15) by replacing θ with VaRα(ψT ).

5 Minimum Risk Static Hedging Strategies
The minimum risk static hedging problem is the determination of an optimal hedging strategy in terms of the decision
variable ζ that minimizes a given risk measure due to the loss. Specifically, let ρ(ψT ) denote a risk measure due to the
loss ψT where ψT is a function og ζ. For example, ρ(ψT ) = E(ψT |ψT > 0) or ρ(ψT ) = P(ψT |ψT > 0) etc. The
minimum risk static hedging problem can now be given by

min
ζ∈Λ

ρ(ψT ). (17)

where Λ ⊆ R denotes the set of feasible static hedging strategies. The feasible set Λ is chosen by the company based on
its risk appetite, risk tolerance, and regulatory constraints. In this section, we use the expressions developed in Section
4 to provide minimum risk static hedging strategies for risk measures including expected loss, probability of loss, and
value-at-risk.
First, let the risk measure be the expected loss given by (7) and note that the expected loss E[ψT ] is a linear function
of the decision variable ζ. However, E[ψT ] is a decreasing function if F0,T > E[XT ] and an increasing function if
F0,T < E[XT ]. If Λ = R (that is, unconstrained) then ρ(ψT ) is unbounded in either case and optimal ζ limits to ±∞.
While this is a mathematically valid solution it should be noted that the variance becomes∞ as ζ becomes ±∞. Hence,
an unconstrained problem with expected loss as the risk measure is an impractical problem to solve. As an alternative, the
company may impose constraints on the decision variable ζ or put constraints on its variance (leading to a mean-variance
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optimization problem). Λ may be chosen to be a closed interval to stasify either the variance constraints or absolute
constraints on ζ itself. A typical regulatory constraint on ζ may be 0 ≤ ζ ≤ N with the interpretation that no short-
selling and over hedging are allowed. In this case, if F0,T > E[XT ] then then the optimal ζ is N and if F0,T > E[XT ]
then then the optimal ζ is 0. The special case in which F0,T = E[XT ] any value of ζ is optimal.
Next, consider the case where the risk measure is the variance of loss var(ψT ) given by (8). Since var(ψT ) is a quadratic
function of ζ it follows that ζ = N is a global minimum (in the case Λ = R). This is in agreement with our earlier
observation that if ζ = N then the loss variable ψT is a deterministic function and var(ψT ) = 0.
Now, let the risk measure be the probability of loss given by (9). If N(B − F0,T ) + θ > 0 then the probability of loss is
increasing for the case ζ < N and decreasing for the case ζ > N . In this case, a minimum exists if the feasible set Λ is
closed and bounded. Similarly, if N(B −F0,T ) + θ < 0 then the probability is decreasing for ζ < N and increasing for
ζ > N . Hence, in this case the global minimum exists at ζ = N .
Finally, we consider the value-at-risk VaR given by (12). Note that VaRα(ψT ) is a piecewise linear function of the
decision variable ζ and continuous at ζ = N . VaRα(ψT ) has i) a positive slope if F0,T < VaR1−α(XT ), ii) a negative
slope on the left of N and a positive slope on the right of N , for the case F0,T ∈ (VaR1−α(XT ),VaRα(XT )), and iii)
a negative slope if F0,T > VaRα(XT ). In all these cases the minimum exists if Λ is closed and bounded.

6 Specialization to Geometric Brownian Motion Model
In Section 3, we presented the expressions for the cdf and pdf associated with the P&L for a static hedging strategy
and in Section 4 we use these functions to develop the expression for different risk measures. The results presented in
these sections make no assumption of probability distribution for the underlying variable XT . In this section, we assume
that the underlying random variable, the exchange rate Xt at time t, evolves continuously in time and follows a log-
normal distribution. Specifically, we assume that the exchange rate Xt evolves continuously in time according to the Itô
stochastic differential equation

dXt = µXtdt+ σdWt (18)
in the interval [0, T ], where µ > 0 represents the rate of return, and σ > 0 is the volatility, both assumed to be constant
and Wt is a Brownian motion. For a given initial value X0, (18) has the solution given by

XT = X0e
((µ− 1

2
σ2)T+σ

√
Tε) (19)

where ε is standard normal random variable corresponding to the Brownian motion WT . Hence, it follows from (19) that
XT is a log-normal random variable given by

XT ∼ LN
[
ln(X0) +

(
µ− 1

2
σ2

)
T, σ
√
T

]
(20)

and the expected value and the variance are respectively given by

E(XT ) = X0e
µT , (21)

var(XT ) = X2
0e

2µT
(
eσ

2T − 1
)
. (22)

Next, the cumulative probability distribution of XT is given by

FXT (x) =

 Φ

(
ln(x)−ln(X0)−(µ− 1

2
σ2)T

σ
√
T

)
, x ≥ 0,

0, x < 0,
(23)

with the corresponding probability density function given by

fXT (x) =

 1√
2π

1

xσ
√
T

exp

(
− (ln(x)−ln(X0)−(µ− 1

2
σ2)T)2

2σ2T

)
, x ≥ 0,

0, x < 0.
(24)

Now consider the static hedging problem having the P&L as defined in (3) and the associated probability distribution and
the density functions as defined in (4) and (5) respectively. Under the assumption that the underlying random variable
XT follows a log-normal distribution, one can get the expressions for the distribution and the density functions of the
loss variable ψT by substituting the log-normal cdf (23) and the log-normal pdf (24) in (4) and (5) respectively.
Similarly, the expressions for the expectation and the variance of loss variable ψT under the log-normal distribution
assumption can be obtained by substituting (21) into (7) and (22) into (8) respectively, that is,

E[ψT ] = NB − ζF0,T − (N − ζ)X0e
µT

var(ψT ) = (N − ζ)2X2
0e

2µT
(
eσ

2T − 1
)
.

Finally, the expression for VaRα(XT ) under the log-normal distribution assumption can be obtained by substituting the
cdf of XT (23) in (10), that is,

VaRα(XT ) = X0exp

(
σ
√
TΦ−1(α) + (µ− 1

2
σ2)T

)
(25)

By substituting (25) into (12) gives expression for the VaRα(ψT ). Figure 1 illustrates the variation of VaRα(ψT ) with
ζ for different conditions involving F0,T .
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Figure 1: VaRα(ψT ) vs ζ for i) F0,T < VaR1−α(XT ), ii) F0,T ∈ (VaR1−α(XT ),VaRα(XT )), and iii) F0,T >
VaRα(XT )

7 Conclusion
In this paper, we presented optimal static currency hedging strategies in which Forward FX contracts are used as hedging
instruments. First, we introduced a static trading strategy and derived analytical expressions for different risk measures
such as Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), Probability of Loss, and Conditional Expectation of
Loss. The results presented here make no assumptions about the underlying probability distribution. Next, using the
expressions for risk measures we derived optimal static hedginging strategies to minimize these risk measures.
It should be noted that in most cases, the optimal strategies were either the no-hedging or the fully-hedged cases. If the
company is interested in a multi-objective minimization then the solution may be somewhere in between. The case of
multi-risk minimization will be considered in a future paper. Furthermore, the current work will also be extended to the
dynamic hedging case where the number of hedging times is sufficiently small for deriving expressions for risk measures
and subsequently optimal hedging strategies.
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