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The complex KdV-Burgers equation
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ABSTRACT: This paper discusses spatially periodic solutions of the complex KdV-Burgers equation. We examine
a special series solution of KdV-Burgers equation and prove the convergence and global regularity of such solutions
associated with initial data satisfying mild conditions. We also establish the existence and uniqueness of the Fourier
series solution with the Fourier modes decaying algebraically in terms of the wave numbers.
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1 INTRODUCTION
We consider the complex Kortweg-de Vries(KdV)-Burgers equation

ut − 6uux + αuxxx − νuxx = 0, (1.1)

where ν ≥ 0 and α ≥ 0 are diffusion and dispersion coefficients respectively and u = u(x, t) = f(x, t) + ig(x, t)
where f and g denote real and imaginary parts of u. Attention will be paid to the periodic solutions of the equation (1.1)
on x ∈ T = [0, 2π] with the given initial data

u(x, 0) = u0(x), x ∈ T. (1.2)

Recent work by Khanal et al. [6] constructs the finite-time singular solutions of the form

u(x, t) =

∞∑
k=1

ak(t) eikx (1.3)

of complex Burgers equation ((1.1) with α = 0) corresponding to the initial data u0(x) = a eix. Their work asserts that
for any sufficiently large time T , there exists an explicit smooth initial data u0 such that its corresponding solution blows
up at t = T . Similar results are also developed in the paper of Poláčik and Šverák [13], in which the complex-valued
Burgers equation on the whole line was shown to develop finite-time singularities for compactly supported smooth data.
Their proof takes advantage of the explicit solution formula

u(x, t) = −3

∫∞
−∞

x−y
t

exp
[
− |x−y|

2

2νt
− 1

2ν

∫ y
−∞ u0(s) ds

]
dy∫∞

−∞ exp
[
− |x−y|2

2νt
− 1

2ν

∫ y
−∞ u0(s) ds

]
dy

obtained via the Hopf-Cole transform. The complex KdV equation

ut − 6uux + αuxxx = 0

also is known to have several family of solutions that blow up in a finite time ([1],[2],[17]). As one would expect, the
behavior of solutions to the complex KdV-Burgers equations is more sophisticated due to the presence of the nonlinearity,
dispersion and dissipation.

In this paper, we explore the conditions under which two types of series solutions of (1.1) are global in time. The first
kind discussed in [6] assumes the form

u(x, t) =

∞∑
k=0

ak(t)eikx (1.4)

and it has the advantage that the coefficients ak(t)’s can be formulated explicitly in terms of ak(0), α and ν. Conse-
quently, the evolution of ak(t) can be traced very closely. As discussed in [6], a simple example of the global solutions
of (1.1) corresponds to the initial data u0(x) = a0e

ix with |a0| < 1 provided ν and α satisfy a suitable condition, say
ν2 + 4α2 ≥ 9 (see Theorem 2.7). For general initial data of the form

u0(x) =

∞∑
k=1

a0k e
ikx
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with |a0k| < 1, (1.1) possesses a unique local solution (1.3) with ak(t) given by a finite sum of terms that can be made
explicit through an inductive relation. To show the convergence of (1.3) for large time, we estimate |ak(t)| by counting
the total number of terms that it contains. This counting problem is closely related to the number of nonnegative integer
solutions to the equation

j1 + 2j2 + 3j3 + · · ·+ kjk = k

for a fixed integer k > 0. Using a result by Hardy and Ramanujan [3], we are able to establish the global regularity of
(1.3) under a mild assumption (see Theorem 2.5). In addition, ‖u(·, t)‖Hs for any s ≥ 0 decays exponentially in t for
large t.

Inspired by a recent work of Sinai on the Navier-Stokes equations [14] and Khanal et al. on the Kawahara equation
[5], we also study the series solution of (1.1) that can be written as

u(x, t) =
∑

k∈Z\{0}

c(k, t)

|k|γ eikx (1.5)

where γ > 1 is a real number and c(k, t) is bounded uniformly in terms of k and t. If T > 0 and R0 = sup
k∈Z\{0}

|c(k, 0)|

satisfy
R0

√
T ≤ C(γ)

√
ν

for some suitable constant C(γ), we show that u in (1.5) is a classical solution of (1.1) on [0, T ] (Theorems 3.3, 3.4 and
3.5). First, we establish the existence of c(k, t) such that

û(k, t) =
c(k, t)

|k|γ

solves the Fourier transform of the complex KdV-Burgers equation. Second, we verify that u in (1.5) is a weak solution
in the distributional sense while the third step proves the bound

|c(k, t)| ≤ C

|k|γ+l

where l > 0 is any fixed integer. A combination of the last two steps especially implies that u in (1.5) is a classical
solution. This process is carried out exactly in the similar fashion as it is done in [5].

The complex KdV, Burgers, and KdV-Burgers equations have recently attracted a good deal of attention. These
equations are important both physically and mathematically. Physically these complex equations do arise in the modeling
of several physical phenomena ([4],[9],[10]). Mathematically these equations exhibit some remarkable features and are
found to be more sophisticated than their real counterpart. For example, the complex KdV is equivalent to a system
of two nonlinearly coupled equations and the conservation laws no longer allow the deduction of global bounds and
does not lead to the global boundedness of the L2-norm of its solutions. The study of complex-valued Burgers and
KdV-Burgers equations is justified to see the effect of dispersion and dissipation on the solutions of complex KdV. A lot
of effort has been devoted recently to the important issue of whether or not their solutions can blow up in a finite time. In
1987, B. Birnir studied the solutions of the complex KdV equation represented by Weierstrass P-function, and proved
that they blow up in finite time as a second order pole. In [2], J. Bona and F. Weissler presented some criteria to imply
that the solutions of nonlinear, dispersive evolution equations lose regularity in finite time. The papers of Yuan and Wu
([15],[16],[17]) treated the complex KdV and KdV-Burgers equations as systems of two nonlinearly coupled equations
and clarified how the potential singularities of the real part are related to those of the imaginary part. Very recently
Y. Li [12] obtained simple explicit formulas for finite-time blowup solutions of the complex KdV equation through
Darboux transform. Another example showing the differences between the real-valued and complex-valued solutions
is the Navier-Stokes equations. Li and Sinai [11] recently showed that the complex solutions of the 3D Navier-Stokes
equations corresponding to large parameter family of initial data blow up in finite time but it remains open whether or
not classical solutions of the 3D incompressible Navier-Stokes equations can develop finite-time singularities.

We organize the rest of this paper as follows. The second section focuses on the series solutions of the form (1.4) of
complex-valued Kdv-Burgers equation and presents the summary of Theorems established in [6]. The third section is
devoted to the series solution of the form (1.5) and details the global regularity results(see Theorems 3.2.3.3,3.4).

2 A special series solution
This section seeks solutions of the form

u(x, t) =

∞∑
k=1

ak(t)eikx. (2.6)

to the initial-value problem for the complex KdV-Burgers equation{
ut − 6uux + αuxxx − νuxx = 0, x ∈ T, t > 0,
u(x, 0) = u0(x), x ∈ T

(2.7)
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where α ≥ 0 and ν ≥ 0.

Local existence and uniqueness result on solutions of the form (2.6) to the complex-valued KdV-Burgers type equation

ut − 6uux + ν(−∆)γu+ α, uxxx = 0, (2.8)

has been discussed in detail in [6]. The equation (2.8) reduces to the complex KdV-Burgers equation when γ = 1. The
fractal Laplacian (−∆)γ is defined through Fourier transform,

̂(−∆)γu(ξ) = |ξ|2γ û(ξ).

The other result proved in [6] asserts that if the L2-norm of a solution of (2.8) is bounded on [0, T ], then all higher
derivatives are bounded and no singularity is possible on [0, T ]. We first present two major results on local well-posedness
without proofs.

Theorem 2.1. Consider (2.8) with γ > 1
2

. Let s > 1
2

. Assume u0 ∈ Hs(T) has the form

u0(x) =

∞∑
k=1

a0k e
ikx. (2.9)

Then there exists T = T (‖u0‖Hs) such that (2.8) with the initial data u0 has a unique solution u ∈ C([0, T );Hs) ∩
L2([0, T ); H̊s+γ) that assumes the form

u(x, t) =

∞∑
k=1

ak(t) eikx.

In the case when γ ≥ 1, we can actually show that no finite-time singularity is possible if we know that the L2-norm
is bounded a priori. In fact, the following theorem states that the L2-norm controls all higher-order derivatives.

Theorem 2.2. Let T > 0 and let u be a weak solution of (2.8) with γ ≥ 1 on the time interval [0, T ]. If we know a priori
that u ∈ L∞([0, T ];L2) ∩ L2([0, T ]; H̊γ), namely

M0 ≡ sup
t∈[0,T ]

‖u(·, t)‖2L2 + ν

∫ T

0

‖Λγu(·, t)‖2L2 dt <∞, (2.10)

then, for any integer k > 0,

Mk ≡ sup
t∈[0,T ]

‖u(k)(·, t)‖2L2 + ν

∫ T

0

‖Λk+γu(·, t)‖2L2 dt <∞.

where Λ = (−∆)
1
2 and u(k) denotes any partial derivative of order k.

Now, we study the global regularity of solutions of the form (2.6) for complex KdV-Burgers equation (2.7). Here, two
major results are established. Theorem 2.5 presents a general conditional global regularity result and Theorem 2.7 asserts
the global regularity of (2.6) for a special case. Assume the initial data u0 is of the form

u0(x) =

∞∑
k=1

a0k e
ikx (2.11)

and is in Hs with s > 1
2

. According to Theorem 2.1, (2.7) has a unique local solution u ∈ C([0, T );Hs) of the form
(2.6) for some T > 0. To study the global regularity of (2.6), we explore the structure of ak(t) and obtain the following
two propositions.

Proposition 2.3. If (2.6) solves (2.7), then ak(t) can be written as

ak(t) =
∑

k≤h≤k2, k≤l≤k3
ak, h, l e

−(νh−αil)t (2.12)

where ak, h, l consists of a finite number of terms of the form

C(α, ν, k, h, l, j1, · · · , jk) aj101 a
j2
02 · · · a

jk
0k (2.13)

with j1, j2 ,· · · , jk being nonnegative integers and satisfying

j1 + 2j2 + · · ·+ kjk = k. (2.14)

Proposition 2.4. Let k ≥ 1 be an integer. Let U(k) = k2 − 2k+ 2 and V (k) = k3 − 3k2 + 3k. The coefficients ak,h,l
in (2.12) have the following properties
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(1) For k ≤ h < k2 and k ≤ l < k3,

ak,h,l =
3ik

ν(k2 − h)− iα(k3 − l)
∑

k1+k2=k

∑
h1+h2=h

∑
11+12=l

αk1,h1,l1αk2,h2,l2 (2.15)

(2) For h = k2 and l = k3,
ak,k2,k3 = ak(0)−

∑
k≤h<k2

∑
k≤l<k3

ak,h,l (2.16)

(3) For U(k) < h < k2 or V (k) < l < k3,
ak,h,l = 0. (2.17)

Proof of Proposition 2.3. If (2.6) solves (2.7) , then ak(t) solves the ordinary differential equation
d

dt
ak(t) + (νk2 − αik3)ak(t)− 3ik

∑
k1+k2=k

ak1(t) ak2(t) = 0.

The equivalent integral form is given by

ak(t) = e−(νk2−αik3)t

a0k + 3ik

∫ t

0

e(νk
2−αik3)τ

∑
k1+k2=k

ak1(τ) ak2(τ) dτ

 . (2.18)

It is easy to show through an inductive process that ak is of the form (2.12). In addition, for k ≤ h < k2 and k ≤ l < k3,
the term in (2.13) with fixed j1, j2, · · · , jk satisfying

j1 + 2j2 + · · ·+ kjk = k

can be expressed as

C(α, ν, k, h, l, j1, · · · , jk) aj101 a
j2
02 · · · a

jk
0k

=
3ik

ν(k2 − h)− iα(k3 − l)
∑

m1+n1=j1

· · ·
∑

mk+nk=jk

C(α, ν, k1, h1, l1,m1, · · · ,mk1)

×C(α, ν, k2, h2, l2, n1, · · · , nk2) am1+n1
01 am2+n2

02 · · · amk+nk0k (2.19)

where the indices satisfy

1 ≤ k1 ≤ k, 1 ≤ k2 ≤ k, k1 + k2 = k,

k1 ≤ h1 ≤ k21, k2 ≤ h2 ≤ k22, h1 + h2 = h,

k1 ≤ l1 ≤ k31, k2 ≤ l2 ≤ k32, l1 + l2 = l,

m1 + n1 = j1, m2 + n2 = j2, · · · , mk + nk = jk.

(mr = 0 for r > k1 and nr = 0 for r > k2)

m1 + 2m2 + · · ·+ k1mk1 = k1, n1 + 2n2 + · · ·+ k2nk2 = k2.

When h = k2 and l = k3,

C(α, ν, k, k2, k3, j1, j2, · · · , jk) =

{
1 for (j1, j2, · · · , jk) = (0, 0, · · · , 1),
−C(α, ν, k, h, l, j1, j2, · · · , jk) otherwise

(2.20)

for some h < k2 and l < k3. To illustrate these formulas, we list ak for k = 1, 2, 3,

a1(t) = a01 e
−(ν−iα)t,

a2(t) =
6i

2ν − 6αi
a201 e

−(2ν−2αi)t +

[
a02 −

6i

2ν − 6αi
a201

]
e−(4ν−8iα)t,

a3(t) =
108a301

(2ν − 6αi)(6ν − 24αi)
e(−3ν+3αi)t

+

[
18ia01a02
4ν − 18αi

− 108a301
(2ν − 6αi)(4ν − 18αi)

]
e(−5ν+9iα)t

+

[
a03 −

18ia01a02
4ν − 18αi

+
108a301

(2ν − 6αi)(4ν − 18αi)
− 108a301

(2ν − 6αi)(6ν − 24αi)

]
× e(−9ν+27αi)t.

Proof of Proposition 2.4. (2.15) follows from a simple induction. (2.16) is obtained by set t = 0 in (2.12). To show
(2.17), we notice that the second summation in (2.15) is over h1 + h2 = h with k1 ≤ h1 ≤ k21 and k2 ≤ h2 ≤ k22 while
the third summation is over l1 + l2 = l with k1 ≤ l1 ≤ k31 and k2 ≤ l2 ≤ k32 . Thus,

h = h1 + h2 ≤ k21 + k22 = k2 − 2k1 k2 ≤ k2 − 2(k − 1) = U(k),

l = l1 + l2 ≤ k31 + k32 = k3 − 3k k1 k2 ≤ k3 − 3k(k − 1) = V (k).

That means, ak,h,l = 0 if U(k) < h < k2 and V (k) < l < k3.
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Theorem 2.5. Consider (2.7) with ν > 0. Assume u0 ∈ Hs(T) with s > 1
2

can be represented in the form (2.11) with

|a0k| ≤ 1, k = 1, 2, · · · (2.21)

If we have the uniform bound
|C(α, ν, k, h, l, j1, · · · , jk)| ≤ C0(α, ν) (2.22)

for all k ≥ 1, k ≤ h < k2, k ≤ l < k3 and (j1, j2, · · · , jk) satisfying (2.14), then (2.7) has a unique global solution u
given by (2.6). In addition, for any s ≥ 0, there are T0 > 0 and δ > 0 such that for any t ≥ T0,

‖u(·, t)‖Hs <
C(α, ν, s)

1− e−νt e
−δνkt (2.23)

where C is a constant depending on α, ν and s only.

We remark that the assumption in (2.22) can be verified for the case when a01 > 0 and a02 = a03 = · · · = 0. We
assume that ν and α satisfy ν2 + 9α2 ≥ 36 and show by induction that

|C(α, ν, k, h, l, j1, · · · , jk)| ≤ 1.

Since a02 = a03 = · · · = 0, these coefficients are nonzero only if j1 = k and j2 = j3 = · · · = jk = 0. For any
k ≤ h < k2 and k ≤ l < k3, we have, according to (2.19),

|C(α, ν, k, h, l, j1, · · · , jk)|

≤
∣∣∣∣ 3ik

ν(k2 − h)− iα(k3 − l)

∣∣∣∣ ∑
m1+n1=j1

|C(α, ν, k1, h1, l1,m1, · · · ,mk1)|

× |C(α, ν, k2, h2, l2, n1, · · · , nk2)|.
For j1 = k, the number of terms in the summation m1 + n1 = j1 is at most k. By the inductive assumption,

|C(α, ν, k, h, l, j1, · · · , jk)| ≤ 3k2√
ν2(k2 − h)2 + α2(k3 − l)2

Applying (2.17), h ≤ U(k) ≡ k2 − 2k + 2 and l ≤ V (k) ≡ k3 − 3k2 + 3k and thus |C(α, ν, k, h, l, j1, · · · , jk)| ≤ 1
by taking into account the assumption on ν and α. When h = k2 and l = k3, the boundedness of the coefficient follows
from (2.20).

The proof of Theorem 2.5 involves a very classical problem in number theory, namely the number of integer solutions
(j1, j2, · · · , jk) to the equation defined in (2.14) for a given positive integer k. This problem is not as simple as it may
look like. An upper bound and an asymptotic approximation for the number of nonnegative solutions are given by G.H.
Hardy and S. Ramanujan [3], as stated in the following lemma.

Lemma 2.6. Let k > 0 be an integer and let Nk denote the number of nonnegative solutions to the equation

j1 + 2j2 + · · ·+ kjk = k.

Then, for some constant C1,

Nk <
C1

k
e2
√
2 k.

In addition, Nk has the following asymptotic behavior:

Nk ∼ 1

4
√

3k
eπ

√
2k
3 , as k →∞.

Proof of Theorem 2.5. Applying (2.21) and (2.22), we obtain the following bound for ak, h, l in (2.12)

|ak, h, l| ≤ C0(α, ν)Nk ≤
C2

k
e2
√
2 k,

where C2 = C0C1 and we have used Lemma 2.6. Therefore,

|ak(t)| ≤
∑

k≤h≤k2

∑
k≤l≤k3

|ak,h,l| e−νht

≤ C2 (k2 − 1) e2
√
2
√
k e−νkt

1− e−νt . (2.24)

For any fixed t > 0, we can choose K = K(ν) and 0 < M = M(ν) < 1 such that

|ak(t)| ≤ C2

1− e−νt M
k for k ≥ K.

Therefore, u represented by (2.6) converges for any t > 0. In addition, u(·, t) ∈ Hs for any s ≥ 0. To see the exponential
decay of ‖u(·, t)‖Hs for large time, we choose T0 = T0(ν, s) such that for any t ≥ T0 and k ≥ 1

(1 + k2)s|ak(t)|2 ≤ C2M
k
1
e−δ νkt

1− e−νt ,

where M1 > 0 and δ > 0 are some constants. This bound then implies (2.23). This completes the proof of Theorem 2.5.

We finally present a direct proof of the fact that (2.6) is global in time for special case a02 = a03 = · · · = 0.
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Theorem 2.7. Consider (2.7) with ν and α satisfying ν2 + 4α2 ≥ 9. If

u0(x) = a01 e
ix with |a01| < 1,

then (2.7) has a unique global solution, which can be represented by (2.6). In addition, for any s ≥ 0, u(·, t) ∈ Hs for
all t ≥ 0.

Proof. We prove by induction that, for any t > 0,

|ak(t)| ≤ |a01|k, k = 1, 2, · · · . (2.25)

Obviously, |a1(t)| ≤ |a01|. To prove (2.25) for k ≥ 2, we recall (2.18), namely

ak(t) = 3ik e−(νk2−αik3)t
∫ t

0

e(νk
2−αik3)τ

∑
k1+k2=k

ak1(τ) ak2(τ) dτ.

Since ν2 + 4α2 ≥ 9, we have

|a2(t)| ≤
∣∣∣∣ 3

2ν − 4αi

∣∣∣∣ |a01|2 (1− e−(4ν−8αi)t
)
≤ |a01|2

and more generally,

|ak(t)| ≤
∣∣∣∣ 3(k − 1)

ν k − αi k2

∣∣∣∣ |a01|k (1− e−(ν k2−αi k3)t
)
≤ |a01|k.

It is then clear that (2.6) converges in Hs with s ≥ 0 for any t ≥ 0. This completes the proof of Theorem 2.7.

3 Fourier series solution
This section is devoted to full series solutions to the initial-value problem for the complex KdV-Burgers equation (2.7).
Assume the initial data u0 is of the form

u0(x) =
∑
k 6=0

c0(k)

|k|γ eikx (3.26)

and write its corresponding solution u = u(x, t) as the series

u(x, t) =
∑
k 6=0

û(k, t) eikx.

Then the coefficient û(k, t) satisfies

û(k, t) = e(−νk
2+iαk3)tû0(k) + 3ik

∫ t

0

e(−νk
2+iαk3)(t−s)

∑
j 6=0,j 6=k

û(j, s) û(k − j, s) ds

and, if û(k, t) = c(k,t)
|k|γ , then

c(k, t) = e(−νk
2+iαk3)tc0(k)

+3i k|k|γ
∫ t

0

e(−νk
2+iαk3)(t−s)

∑
j 6=0,j 6=k

c(j, s)

|j|γ
c(k − j, s)
|k − j|γ ds. (3.27)

The goal here is to rigorously establish the existence and uniqueness of such solutions and to understand if they solve (2.7)
in the classical sense. We now consider the functional framework discussed in [5]. Here, Xγ,T denotes the functional
space of periodic functions g = g(x, t) on T× [0, T ] whose fourier coefficient ĝ(k, t) satisfies

ĝ(k, t) =
c(k, t)

|k|γ for k ∈ Z \ {0}

with
‖c‖ ≡ sup

0≤t≤T
sup

k∈Z\{0}
|c(k, t)| <∞.

Definition 3.1. Let γ > 1 and T > 0. Assume u ∈ Xγ,T has the form

u(x, t) =
∑
k 6=0

û(k, t) eikx with û(k, t) =
c(k, t)

|k|γ .

Then u is called a series solution of (2.7) if c(k, 0) = c0(k) and c(k, t) satisfies (3.27) for t ∈ [0, T ].

Proofs of theorems given in this section are similar to the ones described in [5]. The theory discussed in [5] is related
to the complex Kawahara equation with dissipation but our work here is related to the complex valued KdV-Burgers
equation. Before stating these theorems, we start with a lemma.
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Lemma 3.2. For any γ > 1 and any integer k 6= 0,∑
j 6=0,j 6=k

1

|j|γ |k − j|γ ≤
C(γ)

|k|γ ,

where C(γ) is a constant independent of k.

The detail of the proof of this lemma is given in [5]. The following theorem establishes the existence and uniqueness
of solutions defined in 3.1.

Theorem 3.3. Consider the initial-value problem for the complex KdV-Burgers equation (2.7). Let γ > 1 and assume
u0 ∈ Xγ has the form (3.26). If R0 ≡ ‖u0‖Xγ and T > 0 satisfy

C(γ)
√
T R0 <

√
ν

for some suitable constant C = C(γ), then (2.7) has a unique series solution u ∈ Xγ,T . In addition,

‖u‖Xγ,T < 2R0.

Proof of Theorem 3.3. The approach is the method of successive approximation. For each k ∈ Z \ {0}, define for
n = 1, 2, · · · ,

c(0)(k, t) = e(−νk
2+iαk3)tc0(k),

c(n)(k, t) = e(−νk
2+iαk3)tc0(k)

+3i k|k|γ
∫ t

0

e(−νk
2+iαk3)(t−s)

∑
j 6=0,j 6=k

c(n−1)(j, s)

|j|γ
c(n−1)(k − j, s)
|k − j|γ ds.

It suffices to show, for some θ ∈ (0, 1),

‖c(n)‖ ≤ 2R0, (3.28)

‖c(n) − c(n−1)‖ ≤ θ‖c(n−1) − c(n−2)‖. (3.29)

We prove (3.28) by induction. Assume (3.28) holds for all n ≤ m. Then

|c(m+1)(k, t)| ≤ e−νk
2tR0 +

C

ν
|k|γ−1(1− e−ν|k|

2t) ‖c(m)‖2
∑

j 6=0,j 6=k

1

|j|γ |k − j|γ .

Applying Lemma 3.2 and the inductive assumption, we have

|c(m+1)(k, t)| ≤ e−νk
2tR0 +

C(γ)

ν
|k|−1(1− e−ν|k|

2t)R2
0. (3.30)

It is easily verified that, for any k 6= 0 and t ≥ 0,

|k|−1 (1− e−ν|k|
2t) ≤ (ν t)

1
2 .

Consequently,

‖c(m+1)‖ ≤ R0 +
C(γ)

ν
1
2

T
1
2R2

0.

If

T
1
2 R0 <

ν
1
2

C(γ)
, (3.31)

then
‖c(m+1)‖ ≤ 2R0.

To prove (3.29), consider the difference

|c(n)(k, t)− c(n−1)(k, t)| = 3|k|γ+1 e−νk
2t

×
∫ t

0

eνk
2s

∑
j 6=0,j 6=k

|c(n−1)(j, s)c(n−1)(k − j, s)− c(n−2)(j, s)c(n−2)(k − j, s)|
|j|γ |k − j|γ ds.

Writing

c(n−1)(j, s) c(n−1)(k − j, s)− c(n−2)(j, s) c(n−2)(k − j, s)
= [c(n−1)(j, s)− c(n−2)(j, s)] c(n−1)(k − j, s)

+ c(n−2)(j, s) [c(n−1)(k − j, s)− c(n−2)(k − j, s)]
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and estimating as in the proof of (3.28), we obtain

|c(n)(k, t)− c(n−1)(k, t)| ≤ C(γ)

ν
1
2

t
1
2R0‖c(n−1) − c(n−2)‖.

When (3.31) is satisfied, then
‖c(n) − c(n−1)‖ ≤ θ‖c(n−1) − c(n−2)‖

with

θ =
C(γ)

ν
1
2

T
1
2R0 < 1.

(3.28) and (3.29) allow us to construct the limit of c(n)(k, t) as

c(k, t) = c(1)(k, t) +

∞∑
n=1

(
c(n+1)(k, t)− c(n)(k, t)

)
.

Going through a simple limiting process, we can show that c(k, t) satisfies (3.27). In addition, by letting m → ∞ in
(3.30), we have

|c(k, t)| ≤ e−νk
2tR0 +

C(γ)

ν
|k|−1R2

0, (3.32)

which forms the basis for further regularity estimates. This completes the proof of Theorem 3.3.

We now prove that for any t > 0, the series solution u = u(x, t) in Theorem 3.3 is actually a classical solution. We
divide this process into two steps. First, we show it is a weak solution in the standard distributional sense.

Theorem 3.4. Assume the conditions of Theorem 3.3 and let u be the series solution obtained there. Then u is a weak
solution in the sense that∫ T

0

∫
T

u (φt − 6uφx + αφxxx − νφxx) dxdt−
∫
T

u0(x)φ(x, 0) dx = 0

for any φ ∈ C∞0 (T× [0, T )).

Proof of Theorem 3.4. Recall that

u(x, t) =
∑
k 6=0

û(k, t)eikx with û(k, t) =
c(k, t)

|k|γ .

Let N > 0 be an integer. Consider
uN (x, t) =

∑
|k|≤N,k 6=0

û(k, t) eikx.

To derive the equation for uN , we multiply (3.27) by 1
|k|γ and differentiate with respect to t to get

d

dt
û(k, t) = (−νk2 + iαk3) û(k, t) + 3i k

∑
j 6=0,j 6=k

û(j, t) û(k − j, t).

Multiplying this equation by eikx and summing over |k| ≤ N (k 6= 0), we have

∂tuN − 6uN (uN )x + α(uN )xxx − ν(uN )xx = RN , (3.33)

where RN is given by
R(x, t) = 3

∑
|k|≤N,k 6=0

(ik)eikx
∑
|j|>N

û(j, t) û(k − j, t).

Multiplying (3.33) by φ ∈ C∞0 (T× [0, T )) yields∫ T

0

∫
T

uN (φt − 6uNφx + αφxxx − νφxx) dxdt

−
∫
T

u0(x)φ(x, 0) dx =

∫ T

0

∫
T

RNφdxdt.

Since uN (·, t)→ u(·, t) in L2 uniformly for t ∈ [0, T ], we obtain by letting N →∞∫ T

0

∫
T

u (φt − 6uφx + αφxxx − νφxx) dxdt

−
∫
T

u0(x)φ(x, 0) dx = lim
N→∞

∫ T

0

∫
T

RNφdxdt. (3.34)
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To show the limit on the right is zero, we use the basic inequality∫
T

RNφdx ≤
(∫

T

R2
N (x, t) dx

) 1
2
(∫

T

φ(x, t) dx

) 1
2

and show ‖RN‖L2 → 0. This can be done as follows. Because of the bound∫
T

R2
N (x, t) dx ≤ C

 N∑
k=1

k2
∑
|j|>N

1

|j|2γ |j − k|2γ +

−1∑
k=−N

k2
∑
|j|>N

1

|j|2γ |j − k|2γ


for some constant C, it suffices to consider

N∑
k=1

k2
∑
j>N

1

|j|2γ |j − k|2γ ≤
1

(N + 1)2γ

N∑
k=1

k2

(N − k + 1)2γ

∑
j≥N+1

1

(1 + j−N−1
N−k+1

)2γ
.

The last summation can be bounded by an integral,∑
j≥N+1

1

(1 + j−N−1
N−k+1

)2γ
≤ 1 +

∫ ∞
0

1

(1 + x
N−k+1

)2γ
dx = 1 +

N − k + 1

2γ − 1
.

Thus,
N∑
k=1

k2
∑
j>N

1

|j|2γ |j − k|2γ ≤
C(γ)

(N + 1)2γ

N∑
k=1

k2

(N − k + 1)2γ−1
≤ C(γ)

N4γ−4
.

For γ > 1, it approaches zero as N → ∞. It then follows from (3.34) that u satisfies the weak formulation. This
completes the proof of Theorem 3.4.

The following theorem asserts the regularity of u.

Theorem 3.5. Assume the conditions of Theorem 3.3 and let u be the series solution obtained there. Then, for any t0 > 0
and nonnegative integer m,

u ∈ C1([t0, T );Hm). (3.35)

In particular, this regularity result with Theorem 3.4 implies that u is a classical solution of the complex KdV-Burgers
equation (2.7).

Proof of Theorem 3.5. Obviously u ∈ L2([0, T );L2). Fix t ∈ (0, T ). Inserting the simple inequality

e−νk
2t ≤ 1

|k| e
−νt for any k ∈ Z \ {0}

in (3.32), we find

c(k, t) =
c̃(k, t)

|k| (3.36)

with
|c̃(k, t)| ≤ R̃0 for all k 6= 0 and 0 < t < T .

Then u(x, t) can be represented as

u(x, t) =
∑
k 6=0

c̃(k, t)

|k|γ+1
eikx.

In particular, u(·, t) ∈ H1(T). An iterative process would allow us to show

c(k, t) =
c̃(k, t)

|k|m , u(x, t) =
∑
k 6=0

c̃(k, t)

|k|γ+m eikx. (3.37)

for any positive integer m, where c̃ may not be the same as in (3.36). Thus u(·, t) ∈ Hm(T). To show the regularity of
u in t, we turn to (3.27), which implies that c(k, t) is differentiable in t and

d

dt
c(k, t) == (−νk2 + iαk3) c(k, t)− i k|k|γ

∑
j 6=0,j 6=k

c(j, t)c(k − j, t)
|j|γ |k − j|γ .

It then easily follows from (3.37) and Lemma 3.2 that∣∣∣∣ ddtc(k, t)
∣∣∣∣ ≤ C

|k| .

This together with u(·, t) ∈ Hm(T) guarantee (3.35). This completes the proof of Theorem 3.5.
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[13] P. Poláčik and V. Šverák, Zeros of complex caloric functions and singularities of complex viscous Burgers equation,
J. Reine Angew. Math., 616 (2008) 205-217.

[14] Y. Sinai, Power series for solutions of the 3D-Navier-Stokes system on R3, J. Stat. Phys., 121 (2005) 779-803.

[15] J. Wu and J.-M. Yuan, The effect of dissipation on solutions of the complex KdV equation, Math. Comput. Simula-
tion, 69 (2005) 589-599.

[16] J. Wu and J.-M. Yuan, Local well-posedness and local (in space) regularity results for the complex Korteweg-de
Vries equation, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007) 203-223.

[17] J.-M. Yuan and J. Wu, The complex KdV equation with or without dissipation, Discrete Contin. Dyn. Syst. Ser. B, 5
(2005) 489-512.


