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ABSTRACT: We discuss Hamiltonian formulations for integrable couplings, particularly bi- and tri-integrable cou-
plings, based on zero curvature equations. The basic tools are the variational identities over non-semisimple Lie algebras
consisting of block matrices. Illustrative examples include dark equations and bi- and tri-integrable couplings of the
KdV equation and the AKNS equations, generated from the enlarged matrix spectral problems. The associated varia-
tional identities yield bi-Hamiltonian formulations and hereditary recursion operators, thereby showing their Liouville
integrability.

1 INTRODUCTION
The discovery of solitons in the late 1960s (Zabusky & Kruskal, 1965) has inspired a modern resurgence of interest in
integrable systems. Solitons are strongly stable and localized solutions of nonlinear partial differential equations like
the Kortewegde Vries (KdV) equation (Korteweg & de Vries, 1895), which describes waves on shallow water surfaces.
These equations can be viewed as infinite dimensional integrable Hamiltonian systems (Dickey, 2003). Their study
prompts a very fruitful approach to integrability of Hamiltonian systems, the inverse scattering transform (often reducible
to Riemann-Hilbert problems), through solving associated integral equations (Gardner et al., 1967; Zakharov & Shabat,
1972; Wadati, 1972). The approach is a non-linear analogue of the Fourier transform.

All Hamiltonian systems are divided into two categories: integrable ones and non-integrable ones. The mathematical
theory behind integrability of Hamiltonian systems is rich and interesting. Birkhoff stated “When, however, one attempts
to formulate a precise definition of integrability, many possibilities appear, each with a certain intrinsic theoretic interest”
(Birkhoff, 1927). This report will discuss the so-called Liouville integrable Hamiltonian systems, “not forgetting the
dictum of H. Poincaré, that a system of differential equations is only more or less integrable” (Birkhoff, 1927).

A system of differential equations or differential-difference equations is said to be integrable by quadratures if its
solutions can be obtained after a finite number of steps involving algebraic operations and integration of given functions
(Arnold, 1989). Given a Hamiltonian system of ordinary differential equations (ODEs) on a symplectic space, when is
it integrable by quadratures? A first answer is the Liouville theorem (Bour, 1855; Liouville, 1855). It tells that for a
Hamiltonian system of ODEs defined on a symplectic space (M2N , ω2, H):

pt = {p,H} = ω2(IdH, Idp), qt = {q,H} = ω2(IdH, Idq), (1.1)

the following conditions guarantee integrability by quadratures:

• Existence of N integrals of motion {Fi(p, q)}Ni=1;

• F1, F2, · · · , FN are in involution in pairs: {Fi, Fj} = 0, 1 ≤ i, j ≤ N ;

• F1, F2, · · · , FN are functionally independent on the intersection of their level sets.

Those conditions are called the Liouville conditions, and Liouville integrable systems of ODEs mean Hamiltonian sys-
tems possessing the above Liouville conditions.

However, there are no similar Liouville conditions for guaranteeing integrability by quadratures of partial differential
equations (PDEs) or differential-difference equations (DDEs). We list a few integrable criteria for PDEs and DDEs widely
adopted in the soliton community:

• Lax pair and inverse scattering transform (S-integrable case);

• Transform into linear equations (C-integrable case);

• Painlevé test and the singularity confinement;

• Three-soliton solutions (equations having 3-solitons are called soliton equations);

• Infinitely many symmetries;

• Infinitely many conservation laws;

• Bi-Hamiltonian formulation (which often implies the existence of infinitely many symmetries and conservation laws).
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Liouville integrable systems of PDEs or DDEs are Hamiltonian systems which possess infinitely many commuting
conservation laws. The fundamental question in the integrability theory of PDEs and DDEs is how to explore Hamiltonian
structures and infinitely many commuting conservation laws. Lax proposed an equivalent operator formulation, now
called the Lax pair approach, for studying the KdV equation (Lax, 1968). A Lax pair formulation is equivalent to a zero
curvature equation formulation, which can be depicted as follows:

φx = U(u, λ)φ or Eφ = U(u, λ)φ ⇔ ut = ΦnK0[u]

m
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ut = K0[u] ⇔ Ut − Vx + [U, V ] = 0

or Ut + UV − (EV )U = 0
m

spectral matrix U ⇔ recursion operator Φ.

A continuous (or discrete) Hamiltonian system of PDEs or DDEs reads

ut = K(u, ux, · · · ) [or K(u,Eu,E−1u, · · · )] = J
δH
δu

, (1.2)

where δ
δu

is the variational derivative, J is a Hamiltonian operator and H is called a Hamiltonian functional. For a
Hamiltonian system, there exists a relationship chain:

Conserved functional 7→ adjoint symmetry 7→ symmetry : I 7→ δI
δu
7→ J

δI
δu
, (1.3)

and a Lie algebra homomorphism J δ
δu

:

J
δ

δu
{I1, I2} = [J

δI1

δu
, J
δI2

δu
], (1.4)

where the Poisson bracket of functionals and the Lie bracket of vector fields are defined by

{I1, I2} =

∫
(
δI1

δu
)TJ

δI2

δu
dx, [K,S] = K′(u)[S]− S′(u)[K], (1.5)

in which P ′(u)[v] denotes the Gateaux derivative of an object P = P (u, ux, · · · ) with respect to u along a direction v:

P ′(u)[v] =
∂

∂ε

∣∣∣
ε=0

P (u+ εv, ux + εvx, · · · ). (1.6)

Therefore, the fundamental question on integrable PDEs and DDES is now the following: Given a system of evolution
equations generated from a zero curvature equation

ut = K(u) ⇔ Ut − Vx + [U, V ] = 0 [or Ut + UV − (EV )U = 0], (1.7)

how can we generate its Hamiltonian structure (1.2) with a recursion operator Φ (Olver, 1977) or even a bi-Hamiltonian
structure (Magri, 1978):

ut = K(u) = J
δH1

δu
= M

δH2

δu
, (1.8)

which naturally yields infinitely many commuting conservation laws?
The continuous zero curvature equation

Ut − Vx + [U, V ] = 0 (1.9)

and the discrete zero curvature equation
Ut + UV − (EV )U = 0 (1.10)

are key elements in formulating Hamiltonian integrable systems. The Lax pair U = U(u, λ) and V = V (u, λ), with λ
being the spectral parameter, are square matrices often belonging to semisimple matrix Lie algebras. Integrable couplings,
generated from enlarged Lax pairs, are certain enlarged non-trivial integrable systems including the original system (1.2)
as a subsystem (Ma & Fuchssteiner, 1996; Ma, 2000). Since the integrability of a system has nothing to do with any
arrangement of equations in the system, we will focus on triangular integrable systems, within which an initially given
system will be listed as the first subsystem.

An integrable coupling of (1.2) is, thus, a triangular integrable system of the following form (Ma & Fuchssteiner,
1996): {

ut = K(u),
vt = S(u, v).

(1.11)

If S is nonlinear with respect to the second dependent variable v, the integrable coupling (1.11) is called nonlinear. An
example of integrable couplings is the first-order perturbation system (Ma & Fuchssteiner, 1996):{

ut = K(u),

vt = K′(u)[v],
(1.12)
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where K′ denotes the Gateaux derivative of K.
A bi-integrable coupling of a given integrable system (1.2) is an enlarged triangular integrable system of the following

form: 
ut = K(u),
u1,t = S1(u, u1),
u2,t = S2(u, u1, u2);

(1.13)

and similarly, by a tri-integrable coupling, we mean an enlarged triangular integrable system of the following form:
ut = K(u),
u1,t = S1(u, u1),
u2,t = S2(u, u1, u2),
u3,t = S3(u, u1, u2, u3).

(1.14)

Integrable couplings corresponds to non-semisimple Lie algebras ḡ (Ma et al., 2006a; Ma et al., 2006b), and such Lie
algebras can be written as semi-direct sums (Frappat et al., 2000):

ḡ = g A gc, g - semisimple, gc - solvable. (1.15)

The notion of semi-direct sums
ḡ = g A gc (1.16)

means that the two Lie subalgebras g and gc satisfy

[g, gc] ⊆ gc, (1.17)

where [g, gc] = {[A,B] |A ∈ g, B ∈ gc}, with [·, ·] denoting the Lie bracket of ḡ. Obviously, gc is an ideal Lie
sub-algebra of ḡ. The subscript c indicates a contribution to the construction of coupling systems. We also require the
closure property between g and gc under the matrix multiplication

ggc, gcg ⊆ gc, (1.18)

where g1g2 = {AB |A ∈ g1, B ∈ g2}, while we use the discrete zero curvature equation over semi-direct sums of
matrix Lie algebras to generate discrete coupling systems (Ma et al., 2006b).

Integrable couplings provide insightful clues for classifying integrable systems with multi-components (Ma &
Fuchssteiner, 1996; Ma, 2000). Continuous and discrete zero curvature equations over non-semisimple matrix Lie al-
gebras are the basis for generating integrable couplings, and the associated classical and super variational identities offer
fundamental tools to furnish their Hamiltonian structures (Ma, 2009; Ma, 2010).

In this report, we would like to explore non-semisimple Lie algebras consisting of block matrices, associated with
which enlarged zero curvature equations generate dark equations and bi- and tri-integrable couplings, in both classical
and super cases. Hamiltonian structures of the resulting coupling systems will be furnished through the variational
identities on general Lie algebras (Ma & Chen, 2006; Ma et al., 2008).

More concretely, we will discuss classical and super variational identities, and dark equations and bi- and tri-integrable
couplings. We will introduce matrix Lie algebras consisting of 2 × 2, 3 × 3 and 4 × 4 block matrices and apply them
to the construction of integrable couplings, based on enlarged zero curvature equations. Applications will be made for
the KdV equation and the AKNS soliton hierarchy as illustrative examples. Hamiltonian structures of the resulting
dark equations and bi- and tri-integrable couplings will be presented through the associated variational identities. The
presented matrix Lie algebras will be shown to be a starting point to construct integrable Hamiltonian couplings of given
integrable systems.

2 CLASSICAL VARIATIONAL IDENTITIES
2.1 Variational Identities on Matrix Lie Algebras
Trace identities (Tu, 1989; Tu, 1990; Ma, 1992) state that if the underlying Lie algebra is semisimple, then under the
Killing form, we have the continuous trace identity:

δ

δu

∫
tr(WUλ) dx = λ−γ

∂

∂λ
λγ tr(W

∂U

∂u
), (2.1)

and the discrete trace identity:
δ

δu

∑
n∈ Z

tr(WUλ) = λ−γ
∂

∂λ
λγ tr(W

∂U

∂u
), (2.2)

where γ is a fixed constant, and U and W , belonging to the underlying Lie algebra, satisfy the stationary continuous zero
curvature equation

Wx = [U,W ] (2.3)

and the stationary discrete zero curvature equation

(EW )(EU) = UW, (2.4)
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respectively. Applications are made to typical integrable systems including the KdV equation, the AKNS equations, the
Toda lattice equation and the Volterra lattice equation. One of the applications is to generate the Hamiltonian structure
for the AKNS nonlinear Schrödinger equations:

ut =

[
p

q

]
t

=

[
− 1

2
pxx + p2q

1
2
qxx − pq2

]
= J

δH
δu

, (2.5)

where

J =

[
0 −2

2 0

]
, H =

∫
[−1

4
p2q2 +

1

12
(pxxq − pxqx + pqxx)] dx, (2.6)

from the spectral problem

φx = Uφ, U = U(u, λ) =

[
−λ p

q λ

]
. (2.7)

If the underlying Lie algebra is non-semisimple, we have the continuous variational identity (Ma & Chen, 2006):

δ

δu

∫
〈W,Uλ〉 dx = λ−γ

∂

∂λ
λγ〈W, ∂U

∂u
〉, (2.8)

and the discrete variational identity (Ma, 2007):

δ

δu

∑
n∈ Z

〈W,Uλ〉 = λ−γ
∂

∂λ
λγ〈W, ∂U

∂u
〉, (2.9)

where γ is a fixed constant, 〈·, ·〉 is a non-degenerate, symmetric and ad-invariant bilinear form, and U and W , belonging
to a Lie algebra, either semisimple or non-semisimple, satisfy (2.3) and (2.4), respectively. There are also explicit
formulas for computing the involved constant γ.

• The continuous case: Assume that W solves (2.3), i.e., Wx = [U,W ]. If |〈W,W 〉| 6= 0, then

γ = −λ
2

d

dλ
ln |〈W,W 〉|. (2.10)

• The discrete case: Assume that W solves (2.4), i.e., (EW )(EU) = UW and let Γ = WU . If |〈Γ,Γ〉| 6= 0, then

γ = −λ
2

d

dλ
ln |〈Γ,Γ〉|. (2.11)

If the underlying Lie algebra is simesimple, then all non-degenerate, symmetric and ad-invariant bilinear forms are
equivalent to the Killing form up to a constant multiplier. The Killing form on a Lie algebra is non-degenerate if and only
if the Lie algebra is semisimple. Therefore, we have to use the variational identities to construct Hamiltonian structures
of soliton hierarchies (see, e.g., Xia et al., 2004; Zhang, 2004; Fan & Zhang, 2005; Li & Dong, 2008; Feng & Liu, 2011).
Nevertheless, the above variational identities need to be generalized to establish Hamiltonian formulations associated
with more general non-semisimple Lie algebras. So far, we do not know if there is any Hamiltonian structure for the
following bi-integrable coupling: 

ut = K(u),

vt = K′(u)[v],

wt = K′(u)[w].

(2.12)

2.2 Construction of Bilinear Forms
To construct non-degenerate, symmetric and ad-invariant bilinear forms on the underlying matrix Lie algebra, let us say,
ḡ, conveniently, we first transform the underlying matrix Lie algebra ḡ into a vector form. Define a mapping

σ : ḡ → Rk, A 7→ (a1, · · · , ak)T , (2.13)

where k is the dimension of the underlying matrix Lie algebra ḡ. This mapping σ induces a Lie algebraic structure on
Rk, isomorphic to the matrix Lie algebra ḡ. The corresponding Lie bracket [·, ·] on Rk can be computed as follows

[a, b]T = aTR(b), a = (a1, · · · , ak)T , b = (b1, · · · , bk)T ∈ Rk, (2.14)

where R(b) is the unique matrix generated from the Lie bracket [a, b]. This Lie algebra (Rk, [·, ·]) is isomorphic to the
underlying matrix Lie algebra ḡ, and the mapping σ, defined by (2.13), is a Lie algebra isomorphism between the two Lie
algebras.

Now, take an arbitrary bilinear form on Rk:
〈a, b〉 = aTFb, (2.15)

where F is a constant matrix (actually, F = (〈ei, ej〉)k×k, where e1, · · · , ek are the standard basis of Rk). The
symmetric property

〈a, b〉 = 〈b, a〉 (2.16)
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implies that
FT = F. (2.17)

Under this symmetric condition, the ad-invariance property

〈a, [b, c]〉 = 〈[a, b], c〉 (2.18)

becomes equivalent to the property
F (R(b))T = −R(b)F, b ∈ Rk. (2.19)

This matrix equation with an arbitrary b engenders a linear system of equations on the elements of the matrix F . Solving
the resulting system tells what the matrix F will be. Normally, F contains a few arbitrary constants.

Then, the corresponding bilinear form on the underlying matrix Lie algebra ḡ is given by

〈A,B〉ḡ = 〈σ(A), σ(B)〉Rk = (a1, · · · , ak)F (b1, · · · , bk)T , (2.20)

where
A = σ−1((a1, · · · , ak)T ) ∈ ḡ, B = σ−1((b1, · · · , bk)T ) ∈ ḡ. (2.21)

Owing to the isomorphism of σ, the bilinear form (2.20) is also symmetric and ad-invariant:

〈A,B〉ḡ = 〈B,A〉ḡ, 〈A, [B,C]〉ḡ = 〈[A,B], C〉ḡ, A,B,C ∈ ḡ. (2.22)

This kind of bilinear forms is not of Killing type, if the underlying matrix Lie algebra ḡ is non-semisimple. The bilinear
form (2.20) is non-degenerate if and only if the determinant of F is not zero. Therefore, we can choose values for the
constants in F such that det(F ) is non-zero to get a non-degenerate bilinear form required in the variational identities.

3 MATRIX LIE ALGEBRAS AND INTEGRABLE COUPLINGS
3.1 Lie Algebras
In order to generate integrable couplings, one needs to create associated Lie algebras (see, e.g., Guo & Zhang, 2003; Xia
et al., 2004). One of the ways to do it is to develop matrix Lie algebras consisting of block matrices (Ma, 2012). In this
report, we particularly develop matrix Lie algebras consisting of 2 × 2, 3 × 3 or 4 × 4 block matrices, to generate dark
equations and bi- and tri-integrable couplings. Larger numbers of blocks bring complexity in theoretical verification.

Class 1 - Matrix Lie algebras consisting of 2× 2 block matrices:
All 2× 2 block matrices of the following type:

M1(A1, A2) =

[
A1 A2

0 A1

]
, (3.1)

where A1 and A2 are square matrices of the same order, form a matrix Lie algebra with a semi-direct sum decomposition

ḡ = g A gc, where g = {M1(A1, 0)}, gc = {M1(0, A2)}.

The corresponding matrix product reads

M1(A1, A2)M1(B1, B2) = M1(C1, C2), (3.2)

with C1 and C2 being defined by {
C1 = A1B1,

C2 = A1B2 +A2B1.
(3.3)

This kind of Lie algebras will be used to generate dark equations, and the variational identity in this case reduces to the
bi-trace identity (Ma & Zhang, 2010).

Class 2 - Matrix Lie algebras consisting of 3× 3 block matrices:
Let α and β be two arbitrarily given constants, which could be zero. All 3× 3 block matrices of the following type:

M2(A1, A2, A3) =

 A1 A2 A3

0 A1 + αA2 βA2 + αA3

0 0 A1 + αA2

 , (3.4)

where A1, A2 and A3 be square matrices of the same order, form a matrix Lie algebra with a semi-direct sum decompo-
sition

ḡ = g A gc, where g = {M2(A1, 0, 0)}, gc = {M2(0, A2, A3)}.

The corresponding matrix product reads

M2(A1, A2, A3)M2(B1, B2, B3) = M2(C1, C2, C3), (3.5)
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with C1, C2 and C3 being defined by
C1 = A1B1,

C2 = A1B2 +A2B1 + αA2B2,

C3 = A1B3 +A3B1 + βA2B2 + αA2B3 + αA3B2.

(3.6)

This kind of Lie algebras will be used to generate bi-integrable couplings.
Class 3 - Matrix Lie algebras consisting of 4× 4 block matrices:
Let α, β, µ and ν be four arbitrarily given constants, which could be zero. The following 4× 4 block matrices:

M3(A1, A2, A3, A4) =


A1 A2 A3 A4

0 A1 + αA2 αA3 βA2 + αA4

0 0 A1 + αA2 + µA3 νA3

0 0 0 A1 + αA2

 , (3.7)

where Ai, 1 ≤ i ≤ 4, be square matrices of the same order, form a matrix Lie algebra with a semi-direct sum decompo-
sition

ḡ = g A gc, where g = {M3(A1, 0, 0, 0)}, gc = {M3(0, A2, A3, A4)}.
The corresponding matrix product reads

M3(A1, A2, A3, A4)M3(B1, B2, B3, B4) = M3(C1, C2, C3, C4), (3.8)

with C1, C2, C3 and C4 being defined by
C1 = A1B1,

C2 = A1B2 +A2B1 + αA2B2,

C3 = A1B3 +A3B1 + αA2B3 + αA3B2 + µA3B3,

C4 = A1B4 +A4B1 + αA2B4 + αA4B2 + βA2B2 + νA3B3.

(3.9)

This kind of Lie algebras will be used to generate tri-integrable couplings (Ma et al., 2012).

3.2 Dark Equations
Dark equations (see, e.g., Ma, 2010) are given by{

ut = K(u),

ψt = A(u, ∂x)ψ,
(3.10)

where A is a linear differential operator.
An example is the KdV perturbation system (Ma & Fuchssteiner, 1996):{

ut = 6uux + uxxx,

ψt = 6(uψ)x + ψxxx.
(3.11)

The trace identity yields the Hamiltonian structure of the KdV equation:

ut = 6uux + uxxx = J
δH
δu

, where J = ∂, H =

∫
(−u

2
x

2
+ u3) dx. (3.12)

An application of the bi-trace identity associated with a perturbation spectral matrix

Ū =

[
U(u) U ′(u)[v]

0 U(u)

]
(3.13)

determines the Hamiltonian structure of the perturbation system (3.11):

ūt =

[
u

ψ

]
t

= J̄
δH̄
δū

, where J̄ =

[
0 ∂

∂ 0

]
, H̄ =

∫
(−uxψx + 3u2ψ) dx. (3.14)

Another direct application of the bi-trace identity associated with (3.13) presents the Hamiltonian dark equations of
the AKNS nonlinear Schrödinger equations:

ūt =


p
q
r
s


t

=


− 1

2
pxx + p2q

1
2
qxx − pq2

− 1
2
rxx + 2pqr + p2s

1
2
sxx − q2r − 2pqs

 = J̄
δH̄
δū

, (3.15)
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where J̄ and H̄ are given by

J̄ =

[
0 J

J −J

]
, H̄ =

∫
[−1

2
(pq2r + p2qs) +

1

12
(pxxs+ qxxr − pxsx − qxrx + qrxx + psxx)] dx, (3.16)

with J being defined in (2.6).
A class of nonlinear integrable couplings can be similarly defined by{

ut = K(u),

ψt = A(u, ∂x)ψ +B(u, ∂x)ψ2,
(3.17)

where A and B are linear differential operators. But it is not yet clear to us how to find their Hamiltonian structures.

3.3 Bi- and Tri-Integrable Couplings
We start from the Lie algebras (3.4) and (3.7) to generate a kind of bi- and tri-integrable Hamiltonian couplings for the
AKNS soliton hierarchy, respectively.

3.3.1 The AKNS Soliton Hierarchy
Let us recall the AKNS soliton hierarchy (Ablowitz et al., 1974). The traditional spectral problem for the AKNS hierarchy
is defined by

φx = Uφ, U = U(u, λ) =

[
−λ p

q λ

]
, u =

[
p

q

]
, φ =

[
φ1

φ2

]
. (3.18)

The stationary zero curvature equation (2.3), i.e., Wx = [U,W ], is equivalent to
ax = pc− qb,
bx = −2λ b− 2 pa,

cx = 2qa+ 2λ c,

(3.19)

if we assume that W is of the form

W =

[
a b

c −a

]
=
∑
i≥0

[
ai bi

ci −ai

]
λ−i. (3.20)

The system (3.19) equivalently requires 
bi+1 = − 1

2
bi,x − pai,

ci+1 = 1
2
ci,x − qai,

ai+1,x = pci+1 − qbi+1,

i ≥ 0, (3.21)

upon taking the initial values
a0 = −1, b0 = c0 = 0. (3.22)

We impose the integration conditions

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1, (3.23)

such that the recursion relations in (3.21) will uniquely determine the sequence of {ai, bi, ci| i ≥ 1}. Then, the first few
sets are given by

b1 = p, c1 = q, a1 = 0;

b2 = − 1
2
px, c2 = 1

2
qx, a2 = 1

2
pq;

b3 = 1
4
pxx − 1

2
p2q, c3 = 1

4
qxx − 1

2
pq2, a3 = 1

4
(pqx − pxq).

Now, the zero curvature equations

Utm − V
[m]
x + [U, V [m]] = 0 with V [m] = (λmW )+, m ≥ 0, (3.24)

where P+ denotes the polynomial part of P in λ, generate the AKNS soliton hierarchy:

utm = Km =

[
−2bm+1

2cm+1

]
= Φm

[
−2p

2q

]
= J

δHm
δu

, m ≥ 0, (3.25)

where the Hamiltonian operator, the hereditary recursion operator and the Hamiltonian functionals are given by

J =

[
0 −2

2 0

]
, Φ =

[
− 1

2
∂ + p∂−1q p∂−1p

−q∂−1q 1
2
∂ − q∂−1p

]
, Hm =

∫
2am+2

m+ 1
dx, m ≥ 0, (3.26)

respectively.
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3.3.2 Bi-Integrable Couplings
We use the class of matrix Lie algebras defined by (3.4), and begin with an enlarged spectral matrix

Ū = Ū(ū, λ) = M2(U,U1, U2), ū = (p, q, r, s, v, w)T , (3.27)

where U is defined as in (3.18) and the supplementary spectral matrices U1 and U2 read
U1 = U1(u1) =

[
0 r

s 0

]
, u1 =

[
r

s

]
,

U2 = U2(u2) =

[
0 v

w 0

]
, u2 =

[
v

w

]
.

(3.28)

To solve the enlarged stationary zero curvature equation

W̄x = [Ū , W̄ ], (3.29)

we take a solution of the following type

W̄ = W̄ (ū, λ) = M2(W,W1,W2) (3.30)

where W , defined by (3.20), solves (2.3), i.e., Wx = [U,W ], and W1 and W2 read
W1 = W1(u, u1, λ) =

[
e f

g −e

]
,

W2 = W2(u, u1, u2, λ) =

[
e′ f ′

g′ −e′

]
.

(3.31)

Then, besides (2.3), the enlarged stationary zero curvature equation (3.29) equivalently generates
ex = (p+ αr)g − (q + αs)f + rc− sb,
fx = −2λf − 2(p+ αr)e− 2ra,

gx = 2(q + αs)e+ 2λg + 2sa,

and 
e′x = (p+ αr)g′ − (q + αs)f ′ + (βr + αv)g − (βs+ αw)f + vc− wb,
f ′x = −2λf ′ − 2(p+ αr)e′ − 2(βr + αv)e− 2va,

g′x = 2(q + αs)e′ + 2λg′ + 2(βs+ αw)e+ 2wa.

Trying a formal series solution W̄ by assuming
e =

∞∑
i=0

eiλ
−i, f =

∞∑
i=0

fiλ
−i, g =

∞∑
i=0

giλ
−i,

e′ =

∞∑
i=0

e′iλ
−i, f ′ =

∞∑
i=0

f ′iλ
−i, g′ =

∞∑
i=0

g′iλ
−i,

(3.32)

we arrive at 
fi+1 = −1

2
fi,x − (p+ αr)ei − rai,

gi+1 =
1

2
gi,x − (q + αs)ei − sai,

ei+1,x = (p+ αr)gi+1 − (q + αs)fi+1 + rci+1 − sbi+1,

(3.33)

and 
f ′i+1 = −1

2
f ′i,x − (p+ αr)e′i − (βr + αv)ei − vai,

g′i+1 =
1

2
g′i,x − (q + αs)e′i − (βs+ αw)ei − wai,

e′i+1,x = (p+ αr)g′i+1 − (q + αs)f ′i+1 + (βr + αv)gi+1 − (βs+ αw)fi+1 + vci+1 − wbi+1,

(3.34)

where i ≥ 0. We select the initial data to be

e0 = −1, f0 = g0 = 0; e′0 = −1, f ′0 = g′0 = 0; (3.35)

and impose that
ei|ū=0 = fi|ū=0 = gi|ū=0 = 0, e′i|ū=0 = f ′i |ū=0 = g′i|ū=0 = 0, i ≥ 1. (3.36)
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Then the recursion relations in (3.33) and (3.34) uniquely determine the sequences of {ei, fi, gi| i ≥ 1} and
{e′i, f ′i , g′i| i ≥ 1}. We point out that it is easy to check that first few sets of {ai, bi, ci| i ≥ 1}, {ei, fi, gi| i ≥ 1}
and {e′i, f ′i , g′i| i ≥ 1} are all differential polynomials in six variables p, q, r, s, v, w.

Integrable Couplings:
Let us further define a sequence of enlarged Lax matrices

V̄ [m] = (λmW̄ )+ = M2(V [m], V
[m]
1 , V

[m]
2 ), m ≥ 0, (3.37)

where V [m] is defined as in (3.24) and V [m]
i = (λmWi)+, i = 1, 2, and then, the enlarged zero curvature equations

Ūtm − (V̄ [m])x + [Ū , V̄ [m]] = 0, m ≥ 0, (3.38)

generate a hierarchy of bi-integrable couplings:

ūtm =



p
q
r
s
v
w


tm

= K̄m(ū) =

 Km(u)

S1,m(u, u1)

S2,m(u, u1, u2)

 =



−2bm+1

2cm+1

−2fm+1

2gm+1

−2f ′m+1

2g′m+1


, m ≥ 0, (3.39)

for the AKNS hierarchy (3.25).
Except the first two, all bi-integrable couplings presented above are nonlinear, since the supplementary systems with

m ≥ 2 are nonlinear with respect to the four dependent variables r, s, v, w. This implies that (3.39) provides a hierarchy
of nonlinear bi-integrable couplings for the AKNS soliton hierarchy (3.25). The first nonlinear bi-integrable coupling
system is given by

pt2 = −2b3, qt2 = 2c3, rt2 = −2f3, st2 = 2g3, vt2 = −2f ′3, wt2 = 2g′3, (3.40)

where b3, c3, f3, g3, f
′
3, g
′
3 are defined before.

Hamiltonian structures:
To furnish Hamiltonian structures of the obtained bi-integrable couplings, we need to compute non-degenerate, sym-

metric and ad-invariant bilinear forms on the adopted matrix loop algebra. Following the general procedure in subsection
2.2, a direct computation tells

F =


η1 η2 η3

η2 αη2 + β η3 αη3

η3 αη3 0

⊗
 2 0 0

0 0 1

0 1 0

 , (3.41)

where ηi, 1 ≤ i ≤ 3, are arbitrary constants and ⊗ is the Kronecker product. Therefore, a required bilinear form on the
underlying Lie algebra is determined by

〈A,B〉 = 〈σ(A), σ(B)〉R9 = (a1, · · · , a9)F (b1, · · · , b9)T

= (2 a1b1 + a2b3 + a3b2)η1

+(2 a1b4 + a2b6 + a3b5 + 2 a4b1 + 2αa4b4

+a5b3 + αa5b6 + a6b2 + αa6b5)η2

+(2 a1b7 + a2b9 + a3b8 + 2β a4b4 + 2αa4b7

+αa5b9 + β a5b6 + β a6b5 + αa6b8 + 2 a7b1

+2αa7b4 + αa8b6 + a8b3 + a9b2 + αa9b5)η3, (3.42)

where A = A(a1, a2, · · · , a9) = M2(A1, A2, A3) and B = B(b1, b2, · · · , b9) = M2(B1, B2, B3) are two block
matrices of the form (3.4) with the blocks

Ai =

[
a3i−2 a3i−1

a3i −a3i−2

]
, Bi =

[
b3i−2 b3i−1

b3i −b3i−2

]
, 1 ≤ i ≤ 3. (3.43)

This bilinear form (3.42) is symmetric and ad-invariant:

〈A,B〉 = 〈B,A〉, 〈A, [B,C]〉 = 〈[A,B], C〉,

and it is non-degenerate if and only if

det(F ) = 8 (α2η1 − αη2 + β η3)3η3
6 6= 0. (3.44)
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To apply the variational identity, let us further compute that

〈W̄ , Ūλ〉 = −2 aη1 − 2 eη2 − 2 e′η3,

and

〈W̄ , Ūū〉 =



c η1 + g η2 + g ′η3

b η1 + f η2 + f ′η3

(c+ αg) η2 + (β g + α g ′) η3

(b+ αf) η2 + (β f + α f ′) η3

(c+ αg) η3

(b+ αf) η3


,

where W̄ is given by (3.30). Therefore, the corresponding variational identity with γ = 0 yields the following Hamilto-
nian structures for the AKNS bi-integrable couplings in (3.39):

ūtm = K̄m(ū) = J̄
δH̄m
δū

, m ≥ 0, (3.45)

where the Hamiltonian operator is

J̄ =


η1 η2 η3

η2 αη2 + β η3 αη3

η3 αη3 0


−1

⊗

[
0 −2

2 0

]
, (3.46)

and the Hamiltonian functionals read

H̄m =

∫
2η1am+2 + 2η2em+2 + 2η3e

′
m+2

m+ 1
dx, m ≥ 0. (3.47)

Recursion operator:
Based on (3.21), (3.33) and (3.34), a direct computation yields a recursion relation

K̄m+1 = Φ̄K̄m, m ≥ 1, (3.48)

where the recursion operator Φ̄ is given by

Φ̄ =

 Φ 0 0

Φ1 Φ + αΦ1 0

Φ2 βΦ1 + αΦ2 Φ + αΦ1

 , (3.49)

with Φ being given as in (3.26) and Φ1 and Φ2 being defined by

Φ1 =

[
r∂−1q + (p+ αr)∂−1s r∂−1p+ (p+ αr)∂−1r

−s∂−1q − (q + αs)∂−1s −s∂−1p− (q + αs)∂−1r

]
,

Φ2 =

[
v∂−1q + (βr + αv)∂−1s+ (p+ αr)∂−1w v∂−1p+ (βr + αv)∂−1r + (p+ αr)∂−1v

−w∂−1q − (βs+ αw)∂−1s− (q + αs)∂−1w −w∂−1p− (βs+ αw)∂−1r − (q + αs)∂−1r

]
.

3.3.3 Tri-Integrable Couplings
To construct tri-integrable couplings for the AKNS equations, we use the class of matrix Lie algebras defined by (3.7),
and begin with an enlarged spectral matrix

Ū = Ū(ū, λ) = M3(U,U1, U2, U3), u = (uT , uT1 , u
T
2 , u

T
3 )T , (3.50)

where U = U(u, λ) is defined as in (3.18) and the supplementary spectral matrices and the new dependent variables are
given by

Ui = Ui(ui) =

[
0 ri

si 0

]
, ui =

[
ri

si

]
, 1 ≤ i ≤ 3. (3.51)

To solve the corresponding enlarged stationary zero curvature equation (3.29), we search for solutions of the following
form

W̄ = W̄ (ū, λ) = M3(W,W1,W2,W3) ∈ ḡ, (3.52)

where W is given by (3.20). Then, the enlarged stationary zero curvature equation (3.29) gives
W1,x = [U,W1] + [U1,W ] + α [U1,W1],

W2,x = [U,W2] + α [U1,W2] + [U2,W ] + α [U2,W1] + µ [U2,W2],

W3,x = [U,W3] + β [U1,W1] + α [U1,W3] + ν [U2,W2] + [U3,W ] + α [U3,W1].

(3.53)
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Assume that W1,W2,W3 are of the form

W1 = W1(u, u1, λ) =

[
e f

g −e

]
,

W2 = W2(u, u1, u2, λ) =

[
e′ f ′

g′ −e′
]
,

W3 = W3(u, u1, u2, u3, λ) =

[
e′′ f ′′

g′′ −e′′
]
.

(3.54)

The three equations in the above system (3.53) equivalently engender
ex = −s1b+ r1c− (q + α s1)f + (p+ α r1)g,

fx = −2r1a− 2(p+ α r1)e− 2λ f,

gx = 2s1a+ 2(q + α s1)e+ 2λ g;
e ′x = −s2b+ r2c− (q + α s1 + µ s2)f ′ + (p+ α r1 + µ r2)g ′ − α s2f + α r2g,

f ′x = −2r2a− 2(p+ α r1 + µ r2)e ′ − 2λ f ′ − 2α r2e,

g ′x = 2s2a+ 2(q + α s1 + µ s2)e ′ + 2λ g ′ + 2α s2e;

and 
e ′′x = −s3b+ r3c− (β s1 + α s3)f + (β r1 + α r3)g − ν s2f

′

+ν r2g
′ − (q + α s1)f ′′ + (p+ α r1)g ′′,

f ′′x = −2λ f ′′ − 2(α r3 + β r1)e− 2ν r2e
′ − 2(p+ α r1)e ′′ − 2r3a,

g ′′x = 2λ g ′′ + 2(α s3 + β s1)e+ 2ν s2e
′ + 2(q + α s1)e ′′ + 2s3a,

respectively. Trying a solution W̄ with

e =

∞∑
i=0

eiλ
−i, f =

∞∑
i=0

fiλ
−i, g =

∞∑
i=0

giλ
−i,

e′ =

∞∑
i=0

e′iλ
−i, f ′ =

∞∑
i=0

f ′iλ
−i, g′ =

∞∑
i=0

g′iλ
−i,

e′′ =

∞∑
i=0

e′′i λ
−i, f ′′ =

∞∑
i=0

f ′′i λ
−i, g′′ =

∞∑
i=0

g′′i λ
−i,

(3.55)

and taking the initial data

e0 = e′0 = e′′0 = −1, f0 = g0 = f ′0 = g′0 = f ′′0 = g′′0 = 0, (3.56)

and the integration conditions 
ei|ū=0 = fi|ū=0 = gi|ū=0 = 0,

e′i|ū=0 = f ′i |ū=0 = g′i|ū=0 = 0,

e′′i |ū=0 = f ′′i |ū=0 = g′′i |ū=0 = 0,

i ≥ 1, (3.57)

then we can have 
fi+1 = − 1

2
fi,x − r1ai − (p+ α r1)ei,

gi+1 = 1
2
gi,x − s1ai − (q + α s1)ei,

ei+1,x = −s1bi+1 + r1ci+1 − (q + α s1)fi+1 + (p+ α r1)gi+1;

(3.58)


f ′i+1 = − 1

2
f ′i,x − r2ai − (p+ α r1 + µ r2)e ′i − α r2ei,

g ′i+1 = 1
2
g ′i,x − s2ai − (q + α s1 + µ s2)e ′i − α s2ei,

e ′i+1,x = −s2bi+1 + r2ci+1 − (q + α s1 + µ s2)f ′i+1

+(p+ α r1 + µ r2)g ′i+1 − α s2fi+1 + α r2gi+1;

(3.59)

and 
f ′′i+1 = − 1

2
f ′′i,x − (α r3 + β r1)ei − ν r2e

′
i − (p+ α r1)e ′′i − r3ai,

g ′′i+1 = 1
2
g ′′i,x − (α s3 + β s1)ei − ν s2e

′
i − (q + α s1)e ′′i − s3ai,

e ′′i+1,x = −s3bi+1 + r3ci+1 − (β s1 + α s3)fi+1 + (β r1 + α r3)gi+1

−ν s2f
′
i+1 + ν r2g

′
i+1 − (q + α s1)f ′′i+1 + (p+ α r1)g ′′i+1,

(3.60)

where i ≥ 0. Under the integration conditions in (3.57), these recursion relations uniquely determine the sequences of
{ei, fi, gi| i ≥ 1}, {e′i, f ′i , g′i| i ≥ 1} and {e′′i , f ′′i , g′′i | i ≥ 1}.

Integrable couplings:
Let us now introduce the enlarged Lax matrices

V̄ [m] = M3(V [m], V
[m]
1 , V

[m]
2 , V

[m]
3 ), m ≥ 0, (3.61)
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where V [m] is defined as in (3.24) and
V

[m]
i = (λmWi)+, m ≥ 0. (3.62)

Then, the enlarged zero curvature equations

Ūtm = V̄ [m]
x − [Ū , V̄ [m]], m ≥ 0, (3.63)

determine a hierarchy of coupling systems for the AKNS equations in (3.25):

ūtm =



ptm
qtm
r1,tm

s1,tm

r2,tm

s2,tm

r3,tm

s3,tm


= K̄m(ū) =


Km(u)

S1,m(u, u1)

S2,m(u, u1, u2)

S3,m(u, u1, u2, u3)

 =



−2bm+1

2cm+1

−2fm+1

2gm+1

−2f ′m+1

2g′m+1

−2f ′′m+1

2g′′m+1


, m ≥ 0. (3.64)

It is direct to check that all members in (3.64) with m ≥ 2 provide nonlinear tri-integrable couplings for the AKNS
equations.

Hamiltonian structures:
In order to furnish Hamiltonian structures for the presented tri-integrable couplings in (3.64), we apply the variational

identity. Following the general procedure in subsection 2.2, it is direct to compute that

F =


η1 η2 η3 η4

η2 αη2 + β η4 αη3 αη4

η3 αη3 µ η3 + ν η4 0

η4 αη4 0 0

⊗
 2 0 0

0 0 1

0 1 0

 , (3.65)

where ηi, 1 ≤ i ≤ 4, are arbitrary constants. Now, the corresponding symmetric and ad-invariant bilinear form on the
underlying matrix Lie algebra is given as follows:

〈A,B〉 = 〈σ(A), σ(B)〉R12 = (a1, · · · , a12)F (b1, · · · , b12)T

= (2a1b1 + a2b3 + a3b2)η1

+(2a1b4 + a2b6 + a3b5 + 2a4b1 + 2αa4b4 + a5b3 + αa5b6 + a6b2 + αa6b5)η2

+(2a1b7 + a2b9 + a3b8 + 2αa4b7 + αa5b9 + αa6b8 + 2a7b1 + 2αa7b4

+2µa7b7 + a8b3 + αa8b6 + µa8b9 + a9b2 + αa9b5 + µa9b8)η3

+(2a1b10 + a2b12 + a3b11 + 2αa4b10 + 2β a4b4 + β a5b6 + αa5b12

+β a6b5 + αa6b11 + 2ν a7b7 + ν a8b9 + ν a9b8 + 2αa10b4

+2a10b1 + αa11b6 + a11b3 + αa12b5 + a12b2)η4, (3.66)

where A and B are defined by

A = σ−1((a1, · · · , a12)T ) = M3(A1, A2, A3, A4), B = σ−1((b1, · · · , b12)T ) = M3(B1, B2, B3, B4) (3.67)

with Ai and Bi, 1 ≤ i ≤ 4, being given by

Ai =

[
a3i−2 a3i−1

a3i −a3i−2

]
, Bi =

[
b3i−2 b3i−1

b3i −b3i−2

]
, 1 ≤ i ≤ 4. (3.68)

The bilinear form defined by (3.66) is non-degenerate if and only if the determinant of F is not zero, i.e.,

det(F ) = −16η4
6 (α2η1 − αη2 + β η4

)3
(µ η3 + ν η4)3 6= 0. (3.69)

Therefore, we can choose values for η1, η2, η3 and η4 such that det(F ) is non-zero to get non-degenerate bilinear forms
over the underling matrix Lie algebra.

It is now direct to compute that

〈W̄ , Ūλ〉 = −2a η1 − 2e η2 − 2e ′ η3 − 2e ′′ η4,

and

〈W̄ , Ūū〉 =



c η1 + g η2 + g ′ η3 + g ′′ η4

b η1 + f η2 + f ′ η3 + f ′′ η4

α g ′ η3 + c η2 + (αη2 + β η4)g + α g ′′ η4

b η2 + α f ′ η3 + α f ′′ η4 + (αη2 + β η4)f

c η3 + (µ η3 + ν η4)g ′ + αg η3

b η3 + αη3f + (µ η3 + ν η4)f ′

αg η4 + c η4

b η4 + αf η4


.
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Thus, the corresponding variational identity with γ = 0 generates a Hamiltonian structure for the hierarchy of tri-
integrable couplings in (3.64):

ūtm = J̄
δH̄m
δū

, m ≥ 0, (3.70)

with the Hamiltonian operator

J̄ =


η1 η2 η3 η4

η2 αη2 + β η4 αη3 αη4

η3 αη3 µ η3 + ν η4 0

η4 αη4 0 0


−1

⊗

[
0 −2

2 0

]
. (3.71)

and the Hamiltonian functionals

H̄m =

∫
2am+2 η1 + 2em+2 η2 + 2e ′m+2 η3 + 2e ′′m+2 η4

m+ 1
dx, m ≥ 0. (3.72)

Recursion operator:
The recursion relation

K̄m = Φ̄K̄m−1, m ≥ 1, (3.73)

derived form (3.21), (3.58), (3.59) and (3.60), tells that the recursion operator Φ̄ reads

Φ̄ = Φ̄(ū) =


Φ 0 0 0

Φ1 Φ + αΦ1 0 0

Φ2 αΦ2 Φ + αΦ1 + µΦ2 0

Φ3 β Φ1 + αΦ3 ν Φ2 Φ + αΦ1

 , (3.74)

where Φ is given as in (3.26) and

Φ1 =

[
r1∂
−1q + (p+ α r1)∂−1s1 r1∂

−1p+ (p+ α r1)∂−1r1

−s1∂
−1q − (q + α s1)∂−1s1 −s1∂

−1p− (q + α s1)∂−1r1

]
,

Φ2 =

[
(θ1 + µ r2)∂−1s2 + r2∂

−1(q + α s1) (θ1 + µ r2)∂−1r2 + r2∂
−1(p+ α r1)

−(θ2 + µ s2)∂−1s2 − s2∂
−1(q + α s1) −(θ2 + µ s2)∂−1r2 − s2∂

−1(p+ α r1)

]
,

Φ3 =


θ1∂
−1s3 + θ3∂

−1s1

+ν r2∂
−1s2 + r3∂

−1q,
θ1∂
−1r3 + θ3∂

−1r1

+ν r2∂
−1r2 + r3∂

−1p

−θ2∂
−1s3 − θ4∂

−1s1

−ν s2∂
−1s2 − s3∂

−1q,
−θ2∂

−1r3 − θ4∂
−1r1

−ν s2∂
−1r2 − s3∂

−1p

 ,
in which

θ1 = p+ α r1, θ2 = q + α s1, θ3 = α r3 + β r1, θ4 = α s3 + β s1.

3.3.4 Liouville Integrability
It is direct to show by computer algebra systems such as Maple that the enlarged recursion operators Φ̄, defined by (3.49)
and (3.74), are all hereditary (Fuchssteiner, 1979), i.e., they satisfy

Φ̄′(ū)[Φ̄K̄]S̄ − Φ̄Φ̄′(ū)[K̄]S̄ = Φ̄′(ū)[Φ̄S̄]K̄ − Φ̄Φ̄′(ū)[S̄]K̄ (3.75)

for all enlarged vector fields K̄ and S̄; and that each pair of J̄ and M̄ = Φ̄J̄ in the resulting two hierarchies of integrable
couplings, (3.45) and (3.70), constitutes a Hamiltonian pair (Magri, 1978), i.e., any linear combination N̄ of J̄ and M̄
satisfies ∫

(K̄)T N̄ ′(ū)[N̄S̄]T̄ dx+ cycle(K̄, S̄, T̄ ) = 0 (3.76)

for all enlarged vector fields K̄, S̄ and T̄ .
Therefore, the bi-integrable couplings in (3.39) and the tri-integrable couplings in (3.64) are bi-Hamiltonian (see, e.g.,

Magri, 1978; Olver, 1986), and so, all the presented integrable couplings are Liouville integrable.
In particular, we have

[K̄m, K̄n] = K̄′m(ū)[K̄n]− K̄′n(ū)[K̄m] = 0, m, n ≥ 0, (3.77)

and

{H̄m, H̄n}J̄ =

∫
(
δH̃m
δū

)T J̄
δH̃n
δū

dx = 0, m, n ≥ 0. (3.78)

These provide infinitely many common commuting symmetries {K̄n|n ≥ 0} and conserved functionals {H̄n|n ≥ 0} .
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4 SUPER HAMILTONIAN STRUCTURES
If the underlying Lie algebra is superalgebra, we have similar super variational identities. Let ḡ be a Lie superalgebra
over a supercommutative ring. Then the continuous super variational identity on ḡ holds:

δ

δu

∫
〈W, ∂U

∂λ
〉 dx = λ−γ

∂

∂λ
λγ〈W, ∂U

∂u
〉, (4.1)

and the discrete super variational identity on ḡ holds:

δ

δu

∑
n∈Z

〈W, ∂U
∂λ
〉 = λ−γ

∂

∂λ
λγ〈W, ∂U

∂u
〉, (4.2)

where γ is a fixed constant, U,W ∈ ḡ satisfy (2.3) [or (2.4)], i.e., Wx = [U,W ] [or (EW )(EU) = UW ], and 〈·, ·〉
is a non-degenerate, symmetric and ad-invariant bilinear form on the Lie superalgebra ḡ. A special case of the super
variational identities are the supertrace identities (Ma et al., 2008):

δ

δu

∫
str(adW ad ∂U

∂λ
) dx = λ−γ

∂

∂λ
λγ(adW ad ∂U

∂u
), (4.3)

and
δ

δu

∑
n∈Z

str(adW ad ∂U
∂λ

) = λ−γ
∂

∂λ
λγ(adW ad ∂U

∂u
), (4.4)

where adab = [a, b] and str is the supertrace.
If a spectral matrix U = U(u, λ) is of order 2, we can make a super generalization to construct a super soliton

hierarchy:

Ū = U(u, λ) + αE3 + βE4 =

 U(u, λ)
α

β

β −α 0

 , (4.5)

where E3 and E4 are odd generators of the super sl(2), u is a vector of commuting variables, and α and β are anti-
commuting variables. Applications of the super-trace identities lead to super integrable systems and super-symmetric
integrable systems (see, e.g., Hu, 1997; Ma et al., 2008).

We can also form semi-direct sums of Lie superalgebras and take new enlarged spectral matrices from the resulting
semi-direct sums, to construct super integrable couplings. More specifically, we can make ḡ = g A gc with the Lie
product:

W̄ = W +Wc =
[
Ū , V̄

]
= [U + Uc, V + Vc] , Ū , V̄ ∈ ḡ, (4.6)

where
W = [U, V ] ∈ g, Wc = [U, Vc] + [Uc, V ] + [Uc, Vc] ∈ gc. (4.7)

Applications of the super variational identities will lead to super Hamiltonian structures for super integrable couplings.
The procedure for constructing super integrable couplings is almost the same as the one in the classical case. Only one
needs to pay particular attention to the anticommuting property of fermionic variables.

One class of the powerful super variational identities are bi-supertrace identities for constructing super Hamiltonian
dark equations:

δ

δu

∫ [
str
(
W0

∂U1

∂λ

)
+ str

(
W1

∂U0

∂λ

)]
dx = λ−γ

∂

∂λ
λγ
[
str
(
W0

∂U1

∂u

)
+ str

(
W1

∂U0

∂u

)]
(4.8)

in the continuous case, and

δ

δu

∑
n∈Z

[
str
(
W0

∂U1

∂λ

)
+ str

(
W1

∂U0

∂λ

)]
= λ−γ

∂

∂λ
λγ
[
str
(
W0

∂U1

∂u

)
+ str

(
W1

∂U0

∂u

)]
(4.9)

in the discrete case.

5 CONCLUDING REMARKS
We proposed a few classes of matrix Lie algebras consisting of block matrices to generate integrable couplings, and
successfully constructed dark equations for the KdV equation and the AKNS nonlinear Schrödinger equations, and bi-
Hamiltonian bi- and tri-integrable couplings for the AKNS equations. The presented matrix Lie algebras serve as a
starting point to construct integrable couplings and the general construction scheme can be applied to the other existing
soliton hierarchies like the Dirac hierarchy and the Kaup-Newell hierarchy.

Integrable couplings provide us with valuable insights into the general structure of integrable systems with multi-
components. It will be very helpful in building an exhaustive list of integrable systems to collect concrete examples of
integrable couplings. The theory of integrable couplings yields diverse hereditary recursion operators in block matrix
form, which are difficult to obtain by any direct method. The mathematical theory behind integrable couplings is rich
and interesting. We feel that we are only at the beginning of classifying multiple component integrable systems. Explor-
ing specific examples of integrable couplings will help us discover rich mathematical structures that integrable systems
possess.

There are many further questions on integrable couplings and their solution theories. We list some of them as follows.
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Super-symmetric zero curvature equations:
It is an unsolved problem how to generalize zero curvature equations to the super-symmetric case. Even in the special

case of D = 1 and N = 1, it is not clear to us that how one can solve

DxW = [U,W ], Dx = ∂θ + θ∂x,

for W such that the super-symmetric zero curvature equation

Ut −DxV + [U, V ] = 0

generates super-symmetric integrable systems.
Localness associated with matrix Lie algebras:
There is a localness problem in generating integrable couplings. For example, based on

M(A1, A2, A3) =

 A1 A2 A3

0 A1 + αA2 βA2 + αA3

0 0 A1 + αA2

 ,
how can one show localness of the sub-systems corresponding to the third blockA3 in the resulting integrable couplings?
Our examples discussed above showed that the obtained integrable couplings are all local.

Open question on linear differential equations:
While solving dark equations, we always need to solve linear PDEs with variable coefficients. This brings us a basic

problem about the solution structure of systems of linear ODEs with variable coefficients. How can one represent their
general solutions?

Consider a Cauchy problem
ẋ(t) = A(t)x(t), x(0) = x0 ∈ Rn,

where n ≥ 2. It has the solution
x(t) = e

∫ t
0 A(s) dsx0

if the coefficient matrix commutes with its integral [A(t),
∫ t

0
A(s) ds] = 0. An open question is whether the commuta-

tivity condition [A(t),
∫ t

0
A(s) ds] = 0 is necessary to guarantee that the vector function x(t) defined above solves the

discussed Cauchy problem (Ma et al., 2009).
Open question on the chain rule:
A further open question related to the representation of solutions to systems of linear ODEs is on the chain rule of differ-

entiating exponential matrix functions (Ma & Shekhtman, 2010): Is the commutativity condition [A(t),
∫ t

0
A(s) ds] = 0

necessary to guarantee the chain rule
d

dt
e
∫ t
0 A(s) ds = A(t) e

∫ t
0 A(s) ds?

This chain rule holds if [A(t),
∫ t

0
A(s) ds] = 0. Some counterexamples about a weaker question (Ma & Shekhtman,

2010) were presented by using complex matrices satisfying

eC − C − In = 0,

where In is the identity matrix of order n.
Criterion for multivariate polynomials with one zero:
In generating exact solutions to bilinear differential equations, there is an open question on multivariate polynomials

(Ma et al., 2012): How to determine if a real multivariate polynomial has one and only one zero? There are many such
polynomials, among which are the following two examples:

x2 + y2, zero (x, y) = (0, 0);

2x2 − 6xy + 5y2 + 2x− 4y + 1, zero (x, y) = (1, 1).

This seems more general than Hilbert’s 17th problem, noting that all such multivariate polynomials satisfy the requirement
in Hilbert’s 17th problem.

There are many other interesting questions on integrable couplings. For instance, what kinds of other non-semisimple
matrix Lie algebras can we begin with, to generate bi- or tri-integrable couplings? It is known that Hamiltonian structures
exist for the perturbation systems (Ma & Fuchssteiner, 1996; Sakovich, 1998; Ma, 2002; Ma, 2005), but some matrix Lie
algebras of enlarged block matrices do not possess any non-degenerate bilinear forms required in the variational identities
(Ma, 2003; Ma & Gao, 2009). Are there any concrete criteria which determine if there exist Hamiltonian structures for
integrable couplings, even bi- and tri-integrable couplings? How can one compute solution groups for general integrable
couplings by symmetry constraints like the perturbation systems (Ma & Zhou, 2001; Ma & Zhou, 2002) or by Darboux
transformations engendered through moving frames (Olver, 1999)? A concrete example is the following bi-integrable
coupling 

ut = K(u),

vt = K′(u)[v],

wt = K′(u)[w],

as we mentioned before. How about its Hamiltonian structure and solution groups by symmetry constraints?
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