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ABSTRACT: In this paper we introduce new class of system, so called singularly impulsive or generalized impulsive
dynamical systems with time delay. Dynamics of this system is characterized by the set of differential and difference
equations with time delay, and algebraic equations. They represent the class of hybrid systems, where algebraic equations
represent constraints that differential and difference equations with time delay need to satisfy. In this paper we present
model, assumptions on the model, and two classes of singularly impulsive dynamical systems with delay - time dependent
and state dependent. Further, we present Lyapunov - Krasovskii stability results for the class of singularly impulsive
dynamical systems with time delay.

1 INTRODUCTION
Modern complex engineering systems as well as biological and physiological systems typically possess a multi-echelon
hierarchical hybrid architecture characterized by continuous-time dynamics at the lower levels of hierarchy and discrete-
time dynamics at the higher levels of the hierarchy. Hence, it is not surprising that hybrid systems have been the subject
of intensive research over the past recent years (see Branicky et al. (1998), Ye et al. (1998 b), Haddad, Chellaboina
and Kablar (2001a-b)). Such systems include dynamical switching systems Branicky (1998), Leonessa et al. (2000),
nonsmooth impact and constrained mechanical systems, Back et al. (1993), Brogliato (1996), Brogliato et al. (1997),
biological systems Lakshmikantham et al. (1989), demographic systems Liu (1994), sampled-data systems Hagiwara and
Araki (1988), discrete-event systems Passino et al. (1994), intelligent vehicle/highway systems Lygeros et al. (1998) and
flight control systems, etc. The mathematical descriptions of many of these systems can be characterized by impulsive
differential equations, Simeonov and Bainov (1985), Liu (1988), Lakshmikantham et al. (1989, 1994), Bainov and
Simeonov (1989, 1995), Kulev and Bainov (1989), Lakshmikantham and Liu (1989), Hu et al. (1989), Samoilenko and
Perestyuk (1995), Haddad, Chellaboina and Kablar (2001a-b). Impulsive dynamical systems can be viewed as a subclass
of hybrid systems.

Motivated by the results on impulsive dynamical systems presented in Haddad, Chellaboina, and Kablar (2001, 2005),
the authors previous work on singular or generalized systems, and results on singularly impulsive dynamical systems
published in Kablar(2003, 2010) we presented new class of singularly impulsive or generalized impulsive dynamical
systems with time delay. It presents novel class of hybrid systems and generalization of impulsive dynamical systems to
incorporate singular nature of the systems and time delays. Extensive applications of this class of systems can be found
in contact problems and in hybrid systems.

We present mathematical model of the singularly impulsive dynamical systems with time delay. We show how it
can be viewed as general systems from which impulsive dynamical systems with time delay, singular continuous-time
systems with time delay and singular dicrete-time systems with time delay, as well as without time delay, follow. Then we
present Assumptions needed for the model and the division of this class of systems to time-dependent and state-dependent
singularly impulsive dynamical systems with time delay with respect to the resetting set.

In this paper for the class of nonlinear singularly impulsive dynamical systems with time delay we develop Lyapunov
- Krasovskii and Razumikhin stability results. Results are further specialized to linear case. Note that for addressing the
stability of the zero solution of a singularly impulsive dynamical system the usual stability definitions are valid. Finally,
we draw some conclusions and define future work.

At first, we establish definitions and notations. Let R denote the set of real numbers, let Rn denote the set of n × 1
real column vectors, let N denote the set of nonnegative integers, and let In or I denote the n × n identity matrix.
Furthermore, let ∂S, Ṡ, S̄ denote the boundary, the interior, and a closure of the subset S ⊂ Rn, respectively. Finally, let
C0 denote the set of continuous functions and Cr denote the set of functions with r continuous derivatives.

2 MATHEMATICAL MODEL OF SINGULARLY IMPULSIVE DYNAMICAL
SYSTEMS WITH TIME DELAY

A singularly impulsive dynamical system with delay consists of three elements:

1. A possibly singular continuous-time dynamical equation with time delay, which governs the motion of the system
between resetting events;
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2. A possibly singular difference equation with time delay, which governs the way the states are instantaneously changed
when a resetting occurs; and

3. A criterion for determining when the states of the system are to be reset.

Mathematical model of these systems is described with
Ecẋ(t) = fc(x(t, τ))+Gc(x(t, τ))uc(t),

(t, x(t, τ), uc(t)) 6∈S, (2.1)

Ed4x(t) = fd(x(t, τ))+Gd(x(t, τ))ud(t),

(t, x(t, τ), uc(t))∈S, (2.2)

yc(t) = hc(x(t, τ))+Jc(x(t, τ))uc(t),

(t, x(t, τ), uc(t)) 6∈S, (2.3)

yd(t) = hd(x(t, τ)+Jd(x(t, τ))ud(t),

(t, x(t, τ), uc(t))∈S, (2.4)

where t ≥ 0, τ > 0, x(0) = x0, x(t, τ) ∈ D ⊂ Rn × N, D is an open set with 0 ∈ D, uc ∈ Uc ⊂ Rmc ,
ud(tk) ∈ Ud ⊂ Rmd , tk denotes kth instant of time at which (t, x(t, τ), uc(t)) intersects S for a particular trajectory
x(t, τ) and input uc(t), yc(t) ∈ Rlc , yd(tk) ∈ Rld , fc : D → Rn is Lipschitz continuous and satisfies fc(0) = 0,
Gc : D → n×mc, fd : D → Rn is continuous and satisfies fd(0) = 0, Gd : D → Rn×md , hc : D → Rlc
and satisfies hc(0) = 0, Jc : D → Rlc×mc , hd : D → Rld and satisfies hd(0) = 0, Jd : D → Rld×md , and
S ⊂ [0,∞) × Rn × Uc is the resetting set. Here, as in Haddad, Chellaboina, and Kablar (2001a) we assume that uc(·)
and ud(·) are restricted to the class of admissible inputs consisting of measurable functions (uc(t), ud(t)) ∈ Uc×Ud for
all t ≥ 0 and k ∈ N[0,t) ≡ k : 0 ≤ tk < t, where the constraint set Uc × Ud is given with (0, 0) ∈ Uc × Ud. We refer
to the differential equation (2.1) as the continuous-time dynamics with time delay, and we refer to the difference equation
(2.2) as the resetting law.

Matrices Ec, Ed may be singular matrices. In case Ec = I , Ed = I , and τ = 0 (2.1)–(2.4) represent standard im-
pulsive dynamical systems described in Haddad, Chellaboina, and Kablar (2001a), and Haddad, Kablar, and Chellaboina
(2000, 2005), where stability, dissipativity, feedback interconnections, optimality, robustness, and disturbance rejection
has been analyzed. In absence of discrete dynamics they specialize to singular continuous-time systems, with further spe-
cialization Ec = I to standard continuous-time systems. If only discrete dynamics is present they specialize to singular
discrete-time systems, with further specialization Ed = I to standard discrete-time systems.

In case Ec = I , Ed = I , and τ 6= 0, (2.1)–(2.4) represent standard impulsive dynamical systems with time delay. In
absence of discrete dynamics they specialize to singular continuous-time systems with time delay, with further special-
ization Ec = I to standard continuous-time systems with time delay. If only discrete dynamics is present they specialize
to singular discrete-time systems with time delay, with further specialization Ed = I to standard discrete-time systems
with time delay.

Therefore, theory of the singularly impulsive or generalized impulsive dynamical systems with time delay once devel-
oped, can be viewed as a generalization of the singular and impulsive dynamical system with time delay theory, unifying
them into more general new system theory.

In what follows is given basic setting and division of this class of systems with respect to the definition of the resetting
sets, accompanied with adequate assumptions needed for the model.

We make the following additional assumptions:
A1. (0, x0, uc0) 6∈ S, where x(0) = x0 and uc(0) = uc0, that is, the initial condition is not in S.
A2. If (t, x(t, τ), uc(t)) ∈ S̄\S then there exists ε > 0 such that, for all 0 < δ < ε, s(t+δ; t, x(t, τ), uc(t+δ)) 6∈ S.
A3. If (tk, x(tk), uc(tk)) ∈ ∂S ∩ S then there exists ε > 0 such that, for all 0 < δ < ε and ud(tk) ∈ Ud,

s(tk + δ; tk, Edx(tk) + fd(x(tk)) +Gd(x(tk))ud(tk), uc(tk + δ)) 6∈ S.
A4. We assume consistent initial conditions (and prior and after every resetting).
Assumption A1 ensures that the initial condition for the resetting differential equation (2.1), (2.2) is not a point of

discontinuity, and this assumption is made for convenience. If (0, x0, uc0) ∈ S, then the system initially resets to
Edx

+
0 = Edx0 + fd(x0) + Gd(x0)ud(0) which serves as the initial condition for the continuous dynamics (2.1). It

follows from A3 that the trajectory then leaves S. We assume in A2 that if a trajectory reaches the closure of S at a point
that does not belong to S, then the trajectory must be directed away from S, that is, a trajectory cannot enter S through a
point that belongs to the closure of S but not to S. Finally, A3 ensures that when a trajectory intersects the resetting set
S, it instantaneously exits S, see Figure 1. We make the following remarks.

Figure 1. Resetting Set.

Remark 2.1. It follows from A3 that resetting removes the pair (tk, xk, uc(tk)) from the resetting set S. Thus, imme-
diately after resetting occurs, the continuous-time dynamics (2.1), and not the resetting law (2.2), becomes the active
element of the singularly impulsive dynamical system.

Remark 2.2. It follows from A1-A3 that no trajectory can intersect the interior of S. According toA1, the trajectory x(t)
begins outside the set S. Furthermore, it follows from A2 that a trajectory can only reach S through a point belonging
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to both S and its boundary. Finally, from A3, it follows that if a trajectory reaches a point S that is on the boundary
of S, then the trajectory is instantaneously removed from S. Since a continuous trajectory starting outside of S and
intersecting the interior of S must first intersect the boundary of S, it follows that no trajectory can reach the interior of
S.

Remark 2.3. It follows from A1-A3 and Remark 1.2 that ∂S ∪ S is closed and hence the resetting times tk are well
defined and distinct.

Remark 2.4. Since the resetting times are well defined and distinct, and since the solutions to (2.1) exist and are unique,
it follows that the solutions of the singularly impulsive dynamical system (2.1), (2.2) also exist and are unique over a
forward time interval.

In Haddad, Chellaboina and Kablar (2001a), the resetting set S is defined in terms of a countable number of functions
nk : Rn → (0 ,∞), and is given by

S = ∪k{(nk (x ), x , uc(nk (x )) : x ∈ Rn}. (2.5)

The analysis of singularly impulsive dynamical systems with time delay and with a resetting set of the form (2.5) can
be quite involved. In particular, such systems exhibit Zenoness, beating, as well as confluence phenomena wherein
solutions exhibit infinitely many transitions in a finite times, and coincide after a given point of time, Haddad, Chellaboina
and Kablar (2001a). In this paper we assume that existence and uniqueness properties of a given singularly impulsive
dynamical system with time delay are satisfied in forward time. Furthermore, since singularly impulsive dynamical
systems of the form (2.1)-(2.4) involve impulses at variable times they are time-varying systems.

Here we will consider singularly impulsive dynamical systems involving two distinct forms of the resetting set S. In
the first case, the resetting set is defined by a prescribed sequence of times which are independent of state x. These
equations are thus called time-dependent singularly impulsive dynamical systems with time delay. In the second case,
the resetting set is defined by a region in the state space that is independent of time. These equations are called state-
dependent singularly impulsive dynamical systems with time delay.

2.1 Time-Dependent Singularly Impulsive Dynamical Systems with Time Delay

Time-dependent singularly impulsive dynamical systems with time delay can be written as (2.1)–(2.4) with S defined as

S = n × Rn × Uc, (2.6)

where

n = t1 , t2 , . . . (2.7)

and 0 < t1 < t2 < . . . are prescribed resetting times. When an infinite number of resetting times are used and tk →∞
as k → ∞, then S is closed. Now (2.1)–(2.4) can be rewritten in the form of the time-dependent singularly impulsive
dynamical system with time delay

Ecẋ(t) = fc(x(t, τ)) +Gc(x(t, τ))uc(t), t 6= tk, (2.8)

Ed4x(t) = fd(x(t, τ)+Gd(x(t, τ))ud(t), t = tk, (2.9)

yc(t) = hc(x(t, τ)) + Jc(x(t, τ))uc(t), t 6= tk, (2.10)

yd(t) = hd(x(t, τ)) + Jd(x(t, τ))ud(t), t = tk. (2.11)

Since 0 6∈ τ and tk < tk+1, τ > 0, it follows that the assumptions A1–A3 are satisfied. Since time-dependent
singularly impulsive dynamical systems with time delay involve impulses at a fixed sequence of times, they are time-
varying systems.

Remark 2.5. Standard continuous-time and discrete-time dynamical systems as well as sampled-data systems can be
treated as special cases of singularly impulsive dynamical systems. For details see [1].

Remark 2.6. The time-dependent singularly impulsive dynamical system with time delay (2.8)–(2.11), with Ec = I and
Ed = I includes as a special case the impulsive control problem addressed in the literature wherein at least one of the
state variables of the continuous-time plant can be changed instantaneously to any given value given by an impulsive
control at a set of control instants τ , Haddad, Chellaboina and Kablar (2001a).

2.2 State-Dependent Singularly Impulsive Dynamical Systems with Time Delay

State-dependent singularly impulsive dynamical systems with time delay can be written as (2.1)–(2.4) with S defined as

S = [0,∞)×Z, (2.12)
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where Z = Zx×Uc and Zx ⊂ Rn. Therefore, (2.1)–(2.4) can be rewritten in the form of the state-dependent singularly
impulsive dynamical system with time delay

Ecẋ(t) = fc(x(t, τ))+Gc(x(t, τ))uc(t),

(x(t, τ), uc(t)) 6∈Z,
(2.13)

Ed4x(t) = fd(x(t, τ))+Gd(x(t, τ))ud(t),

(x(t, τ), uc(t))∈Z,
(2.14)

yc(t) = hc(x(t, τ))+Jc(x(t, τ))uc(t),

(x(t, τ), uc(t)) 6∈Z,
(2.15)

yd(t) = hd(x(t, τ))+Jd(x(t, τ))ud(t),

(x(t, τ), uc(t))∈Z.
(2.16)

(2.17)

We assume that (x0, uc0) 6∈ Z , τ > 0, (0, 0) 6∈ Z , and that the resetting action removes the pair (x, uc) from the set Z;
that is, if (x, uc) ∈ Z then (Edx + fd(x) + Gd(x)ud, uc) 6∈ Z , ud ∈ Ud. In addition, we assume that if at time t the
trajectory (x(t, τ), uc(t)) ∈ Z̄\Z , then there exists ε > 0 such that for 0 < δ < ε, (x(t+ τ + δ), uc(t+ δ)) 6∈ Z .

These assumptions represent the specialization of A1–A3 for the particular resetting set (2.12). It follows from these
assumptions that for a particular initial condition, the resetting times τk(x0) are distinct and well defined. Since the
resetting set Z is a subset of the state space and is independent of time, state-dependent singularly impulsive dynamical
systems with time delay are time-invariant systems. Finally, in the case where S ≡ [0,∞)×Rn×Zuc , where Zuc ⊂ Uc

we refer to (2.13)–(2.16) as an input-dependent singularly impulsive dynamical system with time delay. Both these cases
represent a generalization to the impulsive control problem considered in the literature.

3 STABILITY OF SINGULARLY IMPULSIVE DYNAMICAL SYSTEMS WITH
TIME DELAY: LYAPUNOV - KRASOVSKII STABILITY

We consider linear singular time-invariant systems with single delay

Ecẋ(t) = Acx(t) +Ac1x(t− τ),

(t, x(t, τ)) 6∈ Z, (3.18)

Edx(k + 1) = Adx(k) +Ad1x(k − τ),

(t, x(t, τ)) ∈ Z, (3.19)

where x ∈ Rn, Ac, Ad, Ac1, Ad1 are given n× n real matrices, and Ec, Ed may be singular matrices. The usual initial
condition is in the form of

x0(t) = φ(t), (t, x(t, τ)) 6∈ Z, (3.20)

for t, k ∈ [−τ, 0], where φ is a continuous function.
We will use Lyapunov-Krasovskii Stability Theorem to discuss the stability of the system. We will restrict ourselves

to using Lyapunov-Krasovski functional, and aim at arriving at stability criteria that can be written in the form of Linear
Matrix Inequalities (LMI) or a closely related form. Efficient numerical methods are available to solve LMI’s.

We can state a restricted version of Lyapunov-Krasovskii Stability Theorem developed for the class of singularly
impulsive dynamical systems.

Proposition 3.1. A singularly impulsive dynamical system with time-delay system is asymptotically stable if there exists
a bounded quadratic Lyapunov-Krasovskii functional V (φ) such that for some ε > 0, it satisfies Lyapunov-Krasovskii
functional condition

V (φ(t)) ≥ ε‖Ecφ(0)‖2, (t, x(t, τ)) 6∈ Z, (3.21)

V (φ(k)) ≥ ε‖Edφ(0)‖2, (t, x(t, τ)) ∈ Z, (3.22)

and its derivative along the system trajectory,

V̇ (φ(t)) = V̇ (x(t))|x(t)=φ(t), (t, x(t, τ)) 6∈ Z, (3.23)

∆V (φ(k)) = ∆V (x(k))|x(k)=φ(k), (t, x(t, τ)) ∈ Z, (3.24)

satisfies Lyapunov-Krasovskii derivative condition

V̇ (x(t)) ≤ −ε‖Ecφ(0)‖2, (t, x(t, τ)) 6∈ Z, (3.25)

δV (x(k)) ≤ −ε‖Edφ(k0)‖2, (t, x(t, τ)) ∈ Z, (3.26)
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4 DELAY-INDEPENDENT STABILITY CRITERIA BASED ON
LYAPUNOV-KRASOVSKII STABILITY THEOREM

In this section, we will discuss the stability of the same system (3.18)-(3.19) using some simple Lyapunov-Krasovskii
functional method. The results parallel those obtained by Razumikhin Theorem.

4.1 Systems with single delay
Consider again the system (3.18)-(3.19). Probably the simplest stability criterion van be obtained by using the following
Lyapunov-Krasovskii functional

V (x(t)) = xT(t)ET
c PEcx(t) +

∫ τ

t−τ
xT(ξ)Scx(ξ)dξ,

(t, x(t, τ)) 6∈ Z, (4.27)

V (x(k)) = xT(t)ET
d PEdx(k) +

τ∑
t−τ

xT(ξ)Sdx(ξ),

(t, x(t, τ)) ∈ Z (4.28)

where the matrices P and Sc, Sd are symmetric and positive definite.
It can be easily calculated that the derivative of V along the system trajectory is

V̇ (x(t)) = [ xT(t) xT(t− τ) ]

·
[ AT

c PEc + ET
c PAc + Sc ET

c P
Ac

AT
c PEc −Sc

][ x(t)
x(t− τ)

]
,

(4.29)

and

∆V (x(k)) = [ xT(k) xT(k − τ) ])

·
[ AT

dPAd − ET
d PEd + Sd AT

dPAd

AT
dPAd −Sd +AdPAd

][ x(t)
x(t− τ)

]
),

(4.30)

or we can write x as φ to obtain

V̇ (x(t)) =
(
φT(t) φT(−τ)

·
( AT

c PEc + ET
c PAc + Sc ET

c PAd

AT
c PEc −Sc

)( φ(t)
φ(−τ)

)
.

(4.31)

and

V̇ (x(k)) = [ φT(t) φT(−τ) ]

·
[ AT

dPAd − ET
d PEd + Sd AT

dPAd

AT
dPAd −Sd +AT

dPAd

][ φ(t)
φ(−τ)

]
).

(4.32)

It is clear that V̇ (x) ≤ −ε‖Ecx(t)‖2, and ∆V (k) ≤ −ε‖Edx(k)‖2 for some sufficiently small ε > 0 if the matrix in
the expression above is negative definite. Thus we can conclude the following.

Proposition 4.1. System (3.18)-(3.19) is asymptotically stable if there exist real symmetric matrices

ET
c PEc > 0 (4.33)

ET
d PEd > 0 (4.34)

and Sc, Sd such that ( AT
c PEc + ET

c PAc + S ET
c PAd

AT
dPEc −S

)
< 0 (4.35)

( AT
dPAd − ET

d PEd + Sd AT
dPAd

AT
dPAd −Sd +AT

dPAd

)
< 0

(4.36)

are satisfied.
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Proof. Use Proposition 4.1, and choose Lyapunov-Krasovskii functional 4.27–4.28. Notice that 4.35–4.36 implies

Sc > 0, (4.37)

Sd > 0, (4.38)

which together with 4.33–4.34 implies

V (φ) ≥ ε‖Ecφ(0)‖2, (4.39)

V (φ) ≥ ε‖Edφ(0)‖2, (4.40)

for some sufficiently small ε > 0. The Lyapunov-Krasovskii functional condition is satisfied. Also, (??) implies that

V̇ (φ) ≥ ε‖Ecφ(0)‖2, (4.41)

∆V (φ) ≥ ε‖Edφ(0)‖2 (4.42)

in view of 4.31–4.32 , and the Lyapunov-Krasovskii derivative condition is also satisfied. Therefore, the system is
asymptotically stable according to Proposition 4.1. �

It is interesting to compare the stability criterion in Proposition 4.1 obtained using the Lyapunov-Krasovskii Stability
Theorem with the corresponding criterion in Proposition 4 of Kablar (2012), obtained using the Razumikhin Theorem.
It can be seen that the conditions in Proposition 4 can be obtained from those of Proposition 4.1 by introducing the
additional constraint

Sc = αET
c PEc, (4.43)

Sd = αET
c PEc, (4.44)

4.2 Systems with distributed delay
Consider the system with distributed delays

Ecẋ(t) = Acx(t) +

∫ 0

−τ
Ac1(θ)x(t+ θ)dθ, (4.45)

Edẋ(k) = Adx(k) +

0∑
−τ

Ad1(θ)x(k + θ)dθ, (4.46)

where Ac, Ad are given constant matrices and Ac1(θ), Ad1(θ) are continuous matrix valued function given for θ ∈
[−τ, 0].

The Lyapunov-Krasovskii functional for the system can be chosen as

V (φ) = φT(t)Pφ(t) +

∫ 0

−τ
[

∫ 0

θ

φT(ξ)Sc(θ)φ(ξ)dξ]dθ,

(4.47)

V (φ) = φT(t)Pφ(t) +

0∑
−τ

[

0∑
θ

φT(ξ)Sd(θ)φ(ξ)],

(4.48)

(4.49)

The derivative of V (x) can be calculated as

V̇ (φ) = φT(0)[ET
c PAc +AT

c PEc +

∫ 0

−τ
Sc(θ)dθ]

= 2φT(0)

∫ 0

−τ
ET

c PAd(θ)φ(θ)dθ

−
∫ 0

−τ
φT(θ)Sc(θ)φ(θ)dθ, (4.50)

and

∆V (φ) = φT(k0)[AT
dPAd − ET

d PEd +

0∑
−τ

Sd(θ)dθ]

= 2φT(0)

0∑
−τ

AT
dPAd(θ)(θ)dθ

−
0∑

−τ

φT(θ)Sd(θ)φ(θ)dθ, (4.51)
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To facilitate further development, add and subtract a term involving the relaxation matrix functionRc(θ), Rd(θ) in the
above, resulting in

V̇ (φ) = φT(0)[ET
c PAc +AT

c PEc +

∫ 0

−τ
R(θ)dθ]φ(0)

+

∫ 0

−τ
( φT(0) φT(θ) )

·( Sc(θ)Rc(θ) ET
c PAd(θ)

AT
d (θ)PEc −Sc(θ)

)( φ(0)
φ(θ)

)
. (4.52)

and

∆V (φ) = φT(k0)[AT
dPAd − ET

d PEd +

0∑
−τ

Rd(θ)dθ]φ(k0)

+

0∑
−τ

( φT(k0) φT(θ) )

·( S(θ)−Rd(θ) AT
dPAd(θ)

AT
d (θ)PAd −Sd(θ) +AT

dPAd

)( φ(k0)
φ(θ)

)
.

(4.53)

The derivative condition will be satisfied if the two matrices in the above are negative definite.
Proposition 4.2. The system described by (??) is asymptotically stable if there exists real symmetric matrix

ET
c PEc > 0 (4.54)

ET
d PEd > 0 (4.55)

(4.56)

and real symmetric matrix functions Rc(θ), Rd(θ) and Sc(θ), Sd(θ), such that

ET
c PAc +AT

c PEc +

∫ 0

−tau
Rc(θ)dθ < 0 (4.57)

AT
dPAd − ET

d PEd +

0∑
−tau

Rd(θ) < 0 (4.58)

and ( S(θ)−R(θ ET
c PAd(θ)

AT
d (θ)PEc −S(θ)

)
< 0, θ ∈ [−τ, 0].

(4.59)

and ( Sd(θ)−Rd(θ AT
dPAd(θ)

AT
d (θ)PAd −Sd(θ) +AT

dPAd

)
< 0, θ ∈ [−τ, 0].

(4.60)

Proof. Use Proposition 5.2 and Lyapunov-Krasovskii functional (4.47)–(4.48). Since (4.59)–(4.60) implies Sc(θ) >
0, Sd(θ) > 0, it is clear that V (φ) ≥ ε‖Ecφ(0)‖2 and V (φ) ≥ ε‖Edφ(0)‖2 for some sufficiently small ε > 0, the
Lyapunov-Krasovskii functional condition (4.27)–(4.28) are satisfied. In expression (4.52)–(4.53), the second term is
always less then or equal the zero due to (4.59)–(4.60). Also (4.57)–(4.58) implies the existence of a sufficiently small
ε > 0 such that

ET
c PAc +AT

c PEc +

∫ 0

−tau
Rc(θ)dθ < −εI, (4.61)

AT
dPAd − ET

d PEd +

0∑
−tau

Rd(θ)dθ < −εI, (4.62)

(4.63)

Therefore, V̇ (φ) ≤ −ε‖Ecφ(0)‖2, δV (φ) ≤ −ε‖Edφ(0)‖2, and the Lyapunov-Krasovskii derivative condition are also
satisfied. Therefore, the system is asymptotically stable according to Proposition 4.1. �

We can show that the above stability criterion is delay-independent. Also, the corresponding result using the Razu-
mikhin Theorem (Proposition 4 of Kablar (2012) can be obtained from the above result by introducing additional con-
straint

Sc(θ) = α(θ)ET
c PEc, (4.64)

Sd(θ) = α(θ)ET
d PEd, (4.65)



Singularly Impulsive Dynamical Systems with Time Delay: Lyapunov-Krasovskii Stability 55

5 DELAY-DEPENDENT STABILITY CRITERIA BASED ON
LYAPUNOV-KRASOVSKII STABILITY THEOREM

Simple delay-dependent stability criterion can also be derived with the Lyapunov-Krasovskii Theorem, in parallel to
Razumikhin Theorem formulation of Kablar (2012). Consider a system described by (3.18)–(3.19). Recall that we can
use model transformation to obtain a system with distributed delays represented by (??) to (??). The stability of the
system described by (??) to (??) implies that of (3.18)–(3.19). We can apply Proposition 4.1 to obtain the following
Proposition.

Proposition 5.1. The system described by (3.18)–(3.19) is asymptotically stable if there exist real symmetric matrices
P,Rc0, Rd0, Rc1, Rd1, Sc0, Sd0, andSc1, andSd1 such that

ET
c PEc > 0 (5.66)( Mc −ET
c PAc1Ac −ET

c PA
2
c1

−AT
c A

T
c1PEc −Sc0 0

−(A2
c1)TPEc 0 −Sc1

)
< 0

(5.67)

and

ET
d PEd > 0 (5.68)( Md −AT

dPAd1Ad −AT
dPA

2
d1

−AT
dA

T
d1PAd −Sd0 0

−(A2
d1)TPAd 0 −Sd1 +AT

dPAd

)
< 0

(5.69)

where

Mc=
1

τ
[ET

c P (Ac+Ac1)+(Ac+Ac1)TPEc] + Sc0+ Sc1. (5.70)

Md=
1

τ
[AT

dP (Ad+Ad1)+(Ad+Ad1)TPEc] + Sd0+ Sd1. (5.71)

Proof. As is discussed above, it is sufficient to prove the stability of the transformed system described by (??)–(??) and
(??)–(??). Apply Proposition 4.1 and choose

Rc(θ) =
{ Rc0 −τ ≤ θ < 0,
Rc1 −2τ ≤ θ < −τ, (5.72)

Sd(θ) =
{ Sc0 −τ ≤ θ < 0,
Sc1 −2τ ≤ θ < −τ, (5.73)

and

Rd(θ) =
{ Rd0 −τ ≤ θ < 0,
Rd1 −2τ ≤ θ < −τ, (5.74)

Sd(θ) =
{ Sd0 −τ ≤ θ < 0,
Sd1 −2τ ≤ θ < −τ, (5.75)

to obtain the sufficient condition consisting of (5.66)–(5.68) and

[ET
c P (Ac+Ac1)+(Ac+Ac1)TPEc]+τ(Rc0+Rc1) < 0,

(5.76)( Sck −Rck −ET
c PAc1Ack

Ac
T
kA

T
,̊c1PEc −Sck

)
< 0, k = 0, 1.

(5.77)

and

[AT
dP (Ad+Ad1)+(Ad+Ad1)TPAd]+τ(Rd0+Rd1)<0, (5.78)( Sdk −Rdk −AT

dPAd1Adk

Ad
T
kA

T
d1P

Ad −Sdk +AT
dPAd

)
< 0, k = 0, 1. (5.79)

Divide (5.77)–(5.79) by τ , and eliminate Rc0, Rd0 and Rc1, Rd1 from the resulting matrix inequality and (5.77)–
(5.79) to obtain (5.67)–(5.69). �
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Once again, the corresponding result in Proposition 5.1 can be obtained by applying additional constraints

Sck = αkP, (5.80)

Sdk = αkP, (5.81)

(5.82)

If one is to consider the stability of only the system (3.18)–(3.19), the above criterion is clearly better that Proposition
5.1 since it is less conservative and computationally more convenient because of the linearity of parameters. The main
value of Proposition 5.1 is again it is also valid for time-varying delay, as will be discussed in future work of robust
stability analyse of singularly impulsive dynamical systems with time delay.

6 CONSLUSION
In this paper we have presented new class of singularly impulsive dynamical systems with time delay. For this class
systems we have developed asymptotic stability results by using Lyapunov - Krasovskii stability theorem.

7 FUTURE WORK
In future work we will develop stability results based on Razumikhin stabity theorem, and robust stability results for the
class of singularly impulsive dynamical systems based on Razumikhin and Lyapunov - Krasovskii stability theorem.
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