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ABSTRACT: The extended empirical likelihood has been proposed recently to improve the coverage accuracy of the
empirical likelihood ratio confidence region. In this paper, we use the extended empirical likelihood(EEL) to incorporate
side information to improve the efficiency of the empirical estimator of some linear functions. We get the asymptotic
normality of the EEL-weighted estimator, and our simulation study shows that the EEL-weighted estimator performs
better than the usual empirical likelihood(EL) weighted estimator and the empirical estimator, especially when the sample
size is small.
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1 INTRODUCTION
The empirical likelihood(EL) was introduced by Owen(1990, 2001) to construct a confidence region in a nonparametric
setting. As an analog of the parametric likelihood method, it has been extensively applied to different fields due to
some of the nice properties. As nonparametric method, it doesn’t require a prespecified distribution for the data. The
confidence region respects the range of the data and performs better than that based on asymptotic normality. Later,
EL has been applied to many statistical fields(Cheng 2012, Yuan and Zhang 2019). Besides, it is very convenient to
use empirical likelihood method to incorporate side information and construct more efficient point estimator. Qin and
Lawless(1994) proposed the maximum empirical likelihood estimator(MELE). They adopted the empirical likelihood
to combine information about the parameters and showed that the MELE’s are asymptotically efficient in some sense.
Since then, many researchers worked on MELE. Among them, Zhang(1995, 1997, 1999) used it to improve estimates
in M-estimation, quantile process and bootstrapping in the presence of auxiliary information. Yuan et al.(2012) studied
U-statistics with side information and Peng (2015) investigated MELE for differentiable statistical functionals, von-Mises
functions, L-estimators and U-statistics. The estimators obtained by MELE is called empirical likelihood(EL) weighted
estimator.

However, the empirical likelihood method has two practical issues(Tsao 2013). The first one is the rate at which the
likelihood ratio converges to the limiting chi-square distribution and the second one is the convex hull constraint confines
the confidence region to a bounded region inside the parameter space. To overcome these two issues, many correction
approaches have been proposed(DiCiccio, Hall and Romano(1991), Chen(1993), Chen, Variyath and Abraham(2008),
Emerson and Owen(2009)). Especially, Tsao(2013) introduced the extended empirical likelihood(EEL) method to ad-
dress these two issues by expanding the parameter space and making a transformation of the original empirical likelihood
ratio. Their simulation shows that the extended empirical likelihood method performs better in both large and small
sample situtations.

Due to the good performance of the extended empirical likelihood(Tsao (2013)), in this paper, we use it to incorporate
side information to improve the efficiency of the empirical estimator. We call the resulted estimator the extended em-
pirical likelihood weighted(EEL-weighted) estimator. Compared to the usual empirical likelihood weighted estimator in
Wang(2015), the EEL-weighted estimator performs better in terms of MSE, especially when the sample size is smaller.

In section 2, we describe the extended empirical likelihood(EEL) weighted estimator and present the main results. In
section 3, a simulation study is presented while in section 4 we give the proof of the main results.

2 Extended Empirical Likelihood Weighted Estimator
Let X ∈ Rd be a random vector with distribution F and X1, . . . , Xn be n i.i.d. copies of X . We want to estimate
the linear functional δ = E(ψ(X)), where ψ is an square-integrable univariate or multivariate function. Suppose side
information is available and given by

E[g(X, θ0)] = 0,

where g(X, θ0) is a given p-dimensional function and θ0 ∈ Rp is known. The empirical estimator of δ is δ̂ =
1
n

∑n
i=1 ψ(Xi). Clearly, the empirical estimator doesn’t use the side information. Hence, it is not efficient in some

sense.
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To incorporate the side information, consider the empirical likelihood ratio(Owen 1990,2001)

Rn(θ0) = sup

{ ∏
1≤i≤n

nπi

∣∣∣∣ n∑
i=1

πig(Xi, θ0) = 0, πi ≥ 0,

n∑
i=1

πi = 1

}
.

By the method of Lagrange multipliers(Owen 2001), the solution to the above optimization problem is

π̃i =
1

n

1

1 + ηT g(Xi, θ0)
,

where η ∈ Rp satisfies the following equation

1

n

n∑
i=1

g(Xi, θ0)

1 + ηT g(Xi, θ0)
= 0.

Then the EL-weighted estimator(Wang 2015) of δ is

δ̂EL =

n∑
i=1

π̃iψ(Xi).

Since π̃i contains the side information, the EL-weighted estimator is more efficient than the empirical estima-
tor(Wang(2015)). The asymptotic normality of the JEL-weighted estimator is given in Wang(2015).

Alternatively, we use the extended empirical likelihood to incorporate the side information. Let θ̃ be the maximum
empirical likelihood estimator(MELE) of θ0, that is, θ̃ = argmaxRn(θ). Then the extended empirical likelihood
defined by Tsao(2013) is

R∗
n(θ0) = sup

{ ∏
1≤i≤n

nπi

∣∣∣∣ n∑
i=1

πig(Xi, θ0 − kn(θ0 − θ̃)) = 0, πi ≥ 0,

n∑
i=1

πi = 1

}
,

where kn = 1− 1
rn

and rn > 0. Similary, the solution is

πi =
1

n

1

1 + λT g(Xi, θ0 − kn(θ0 − θ̃))
,

with λ subject to the equation
1

n

n∑
i=1

g(Xi, θ0 − kn(θ0 − θ̃))

1 + λT g(Xi, θ0 − kn(θ0 − θ̃))
= 0.

We define the EEL-weighted estimator as

δ̂EEL =

n∑
i=1

πiψ(Xi).

To get the asymptotic distribution of the EEL-weighted estimator, we assume the following conditions hold for g(X, θ).

(C1) E(g(X, θ0)) = 0 and 0 < V ar(g(X, θ0)) < +∞ is positive definite.
(C2) The first and second partial derivatives of g(X, θ) with respect to θ are all continuous in θ. And they are bounded in
norm by an integrable function of X in a neighborhood of θ0.

Under condition (C1) and (C2) and assuming kn → 0 as n→ +∞, we have

δ̂EEL = ψ̄ − ϕ̄+ op(
1√
n
),

where ϕ̄ = 1
n

∑n
i=1 ϕ(Xi), ϕ(X) = E[ψ(X)gT (X, θ0)]W

−1g(X, θ0) and W = V ar(g(X, θ0)). If Σ0 = V ar(ψ)−
V ar(ϕ) is positive definite, then √

n(δ̂EEL − δ) ⇒ N(0,Σ0), n→ +∞.

Hence, δ̂EEL has smaller asymptotic variance than the empirical estimator.
The expansion and asymptotic distribution in Theorem 1 is the same as that of the EL-weighted estimator, Theorem

2.2.1 in Wang(2015). This is due to the fact that when kn goes to zero, the transformed term θ0 − kn(θ0 − θ̃) will tend
to θ0. Hence for large sample size, the EEL-weighted estimator and the EL-weighted estimator are expected to have
similar performance. However, Tsao(2013) showed the extended empirical likelihood has higher coverage accuracy than
the usual empirical likelihood for small sample size. Hence the EEL weighted estimator will take more advantage of the
side information and be more efficient than the EL-weighted estimator when sample size is small, which is confirmed by
our simulation study in Section 3.
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Sometimes the side information is given by U-statistics(Yuan et al 2012, Wang 2015). Let h : Rm → Rp be a
permutation symmetric function with parameter θ ∈ Rq . The U-statistics with kernel h of order m is defined as

Un(h) =

(
n

m

)−1 ∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim ; θ).

We assume that 0 < V ar(h) < +∞ and the side information is given by

E[Un(h)] = E[h(X1, . . . , Xm; θ0)] = 0.

However, we can not construct empirical likelihood directly using the above equation. We employ the jackknife pseudo
value method(Jing et al 2009). The jackknife pseudo values of the U-statistics are defined as

Vnj = nUn − (n− 1)U
(−j)
n−1 , j = 1, 2, . . . , n,

where U (−j)
n−1 is the U-statistics based on X1, . . . , Xj−1, Xj+1, . . . , Xn. It is shown that Vnj are asymptotically inde-

pendent(Lin 2013). Then we can define the jackknife empirical likelihood(JEL)(Wang 2015) as

Rn(θ0) = sup

{ n∏
i=1

nwi :

n∑
i=1

wiVni(θ0) = 0, wi > 0,

n∑
i=1

wi = 1

}
.

The solution is

w̃i =
1

n

1

1 + τTVni(θ0)
,

where τ satisfies

1

n

n∑
i=1

τTVni(θ0)

1 + τTVni(θ0)
= 0.

The jackknife empirical likelihood(JEL) weighted estimator(Wang 2015) is

δ̂JEL =

n∑
i=1

w̃iψ(Xi).

The asymptotic normality of the JEL-weighted estimator is given in Wang(2015).
Let θ̃ be the maximum jackknife empirical likelihood estimator of θ0. Then we define the jackknife extended empirical

likelihood(JEEL) as

R∗
n(θ0) = sup

{ n∏
i=1

nwi :

n∑
i=1

wiVni(θ0 + kn(θ̃ − θ0)) = 0, wi > 0, kn > 0,

n∑
i=1

wi = 1

}
.

The solution is
wi =

1

n

1

1 + ξTVni(θ0 + kn(θ̃ − θ0))
,

where ξ satisfies

1

n

n∑
i=1

Vni(θ0 + kn(θ̃ − θ0))

1 + ξTVni(θ0 + kn(θ̃ − θ0))
= 0.

Define the jackknife extended empirical likelihood weighted estimator as

δ̂JEEL =

n∑
i=1

πiψ(Xi).

To get the asymptotic distribution, let’s state the following assumption for h1(x) = E[h(X1, X2, . . . , Xm)|X1 = x].
(A1) h(X1, . . . , Xm; θ) is twice continuously differentiable with respect to θ. The norm of the first and second partial
derivatives are controlled by some square-integrable function in a neighborhood of θ0.
(A2) E||h(X1, . . . , Xm; θ)||2 ≤M < +∞ in a neighborhood of θ0 for M > 0.
(A3) 0 < V ar(h(X1, . . . , Xm; θ0)) < +∞.

Then we have Under the assumptions (A1)-(A3) and nkn = o(1), we have

δ̂JEEL = ψ̄ − ϕ̄+ op(
1√
n
),

where ϕ̄ = 1
n

∑n
i=1 ϕ(Xi), ϕ(X) = E[ψ(X)hT

1 (X; θ0)]W
−1h1(X; θ0) and W = V ar(h1(X; θ0)). If Σ0 =

V ar(ψ)− V ar(ϕ) is positive definite, then
√
n(δ̂JEEL − δ) ⇒ N(0,Σ0), n→ +∞.

Hence, δ̂JEEL has smaller asymptotic variance than the empirical estimator.
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Table 1: Simulated MSE Ratios
X ∼ N (1, 22)

(n, rn) (10, 1.38) (20, 1.3) (30, 1.29) (40, 1.28) (50, 1.25) (80, 1.2) (150, 1.1)
EL 0.7312 0.8482 0.8428 0.8548 0.8860 0.9148 0.8704
EEL 0.7201 0.8015 0.8083 0.8159 0.8452 0.8702 0.8532

X ∼ N (1, 52)

EL 0.7841 0.9578 0.9410 0.9856 0.9907 0.9661 0.9714
EEL 0.7658 0.9089 0.8838 0.9348 0.9514 0.9411 0.9603

X ∼ N (1, 102)

EL 0.8684 0.9276 0.9961 0.9824 0.9503 1.0210 1.0019
EEL 0.8387 0.8859 0.9498 0.9310 0.9234 0.9875 0.9913

X ∼ 0.5N (0, 52) + 0.5N (4, 52)

EL 0.8635 0.8777 0.8456 0.8603 0.8538 0.8645 0.7952
EEL 0.8154 0.8479 0.8255 0.8305 0.8321 0.8484 0.7943

X ∼ 0.5N (0, 42) + 0.5N (4, 152)

EL 0.9042 0.9204 0.9277 0.9162 0.9016 0.9127 0.8824
EEL 0.8561 0.8839 0.8968 0.8831 0.8784 0.8934 0.8743

X ∼ 0.2N (0, 72) + 0.8N (2, 72)

EL 0.9688 0.9836 0.9700 0.9783 0.9888 0.9323 0.9214
EEL 0.9097 0.9428 0.9379 0.9432 0.9605 0.9200 0.9164

X ∼ Laplace(0, 1)

EL 0.8460 0.9094 0.9516 0.9773 0.9898 1.0383 1.0283
EEL 0.8181 0.8818 0.9227 0.9489 0.9637 1.0090 1.0133

X ∼ Laplace(0, 5)

EL 0.7502 0.9185 0.9715 0.9857 0.9672 1.0299 1.0162
EEL 0.7227 0.8859 0.9337 0.9526 0.9474 0.9971 1.0011

X ∼ Laplace(4, 8)

EL 0.7391 0.8993 0.9207 0.9204 0.9337 0.9673 0.9734
EEL 0.7140 0.8692 0.8900 0.8852 0.8991 0.9339 0.9596

X ∼ Logistic(0, 1)

EL 0.9007 0.9770 0.9836 0.9856 1.0187 1.0342 1.0384
EEL 0.8613 0.9398 0.9504 0.9569 0.9897 1.0098 1.0267

X ∼ Logistic(2, 4)

EL 0.8574 0.9036 0.9473 0.9301 0.9614 0.9791 0.9435
EEL 0.8144 0.8685 0.9125 0.8992 0.9283 0.9525 0.9336

3 Simulation Study

In this section, we present simulation results to demonstrate the performance of EEL-weighted estimator for small sample
sizes. To do this, we assume the mean value is known, that is, E(X) = θ0 and estimate the moments as in Example 5.2
in Zhang(1999). In this case, the side information is given by E[g(X, θ0)] = 0 with g(x, θ) = x − θ. We estimate the
second or fourth moment by the empirical estimator, the EL-weighted estimator and the EEL-weighted estimator. The
sample sizes are n = 10, 20, 30, 40, 50, 80, 150, and we take γn = 1.38, 1.3, 1.29, 1.28, 1.25, 1.2, 1.1. To compare
the performance of the three estimators, we run 2000 simulations under each sample size to compute the mean square
error(MSE) of each estimator and report the ratios of MSE of the EL-weighted or EEL-weighted estimator to MSE of
the emipirical estimator. The smaller ratio implies the estimator is better compared to the empirical estimator. We draw
data from normal distribution, mixture distribution, Laplace distribution and Logistic distribution. For the normal case,
we estimate the fourth moment, while the second moment is estimated in the rest cases with the known mean as side
information.

The table 1 below shows the simulation result. For smaller sample sizes 10, 20, 30, 40, 50, all the ratios are smaller than
1 implying that both the EEL-weighted and the EL-weighted estimator are better than the empirical estimator. Besides,
the MSE ratio of EEL-weighted estimator to the empirical estimator is smaller than the MSE ratio of the EL-weighted
estimator to the empirical estimator, hence the EEL-weighted estimator is better than the El-weighed estimator. For larger
sample sizes 80 and 150, the EEL-weighted estimator and the EL-estimator have approximately the same MSE with the
ratios close to 1, which implies that for larger sample size, the three estimators performs very similarly as expected.
Hence, even though the EEL-weighted has the same asymptotic distributon as the EL-weighed estimator, for smaller
sample size, the EEL-weighted estimator is better than the EL-weighted estimator and the empirical estimator.
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4 Proofs of Main Results
We prove Theorem 1 for the case when g(X, θ) = u(X) − θ. The general case can be proved in a similar way. Notice
under the condition of the theorem, ||η|| = Op(

1√
n
) and max1≤i≤n |ηT (u(Xi)− θ0)| = op(1) by Owen (2001).

Let Zi = u(Xi) − ū − 1
γn

(θ0 − ū) and Yi = u(Xi) − θ0. Suppose 0 < V ar(u(X1)) < +∞ and rn → 1 as
n→ +∞. Then we have
(1) Zi = Yi + op(

1√
n
).

(2) max1≤i≤n |Zi| = op(
1√
n
).

(3) 1
n

∑n
i=1 |Zi|3 = op(

1√
n
).

Proof: (1) By the central limit theorem, we have

Zi = u(Xi)− ū− 1

γn
(θ0 − ū)

= u(Xi)− θ0 + (
1

γn
− 1)(ū− θ0)

= u(Xi)− θ0 + op(
1√
n
).

(2) By Lemma 11.2 in Owen(2001), it’s easy to get

max
1≤i≤n

|Zi| = max
1≤i≤n

|Yi + op(
1√
n
)|

≤ max
1≤i≤n

|Yi|+ op(
1√
n
)

= op(
√
n).

(3) By Lemma 11.3 in Owen(2001), we have

1

n

n∑
i=1

|Zi|3 =
1

n

n∑
i=1

|Yi + op(
1√
n
)|3

≤ 1

n

n∑
i=1

|Yi|3 + op(
1√
n
)

= op(
√
n).

Under the conditions of Theorem 1, ||λ|| = Op(
1√
n
) and max1≤i≤n |λTZi| = op(1), and λ = η + op(

1√
n
).

Proof: Let Ỹi = λTZi, Z∗
n = max1≤i≤n ||Zi||, λ = ||λ||θ with ||θ|| = 1. Note that

1

n

n∑
i=1

Zi −
1

n

n∑
i=1

ZiỸi

1 + Ỹi

=
1

n

n∑
i=1

Zi(1−
Ỹi

1 + Ỹi

)

=
1

n

n∑
i=1

Zi

1 + Ỹi

= 0.

Then we have

1

γn
(ū− θ0) =

1

n

n∑
i=1

Zi

=
1

n

n∑
i=1

ZiỸi

1 + Ỹi

=
1

n

n∑
i=1

ZiZ
T
i θ

1 + Ỹi

||λ||,

from which yields

1

γn
θT (ū− θ0) =

1

n

n∑
i=1

θTZiZ
T
i θ

1 + Ỹi

||λ||

= θT
(
1

n

n∑
i=1

ZiZ
T
i

1 + Ỹi

)
θ||λ||.

Note that

θT
(
1

n

n∑
i=1

ZiZ
T
i

1 + Ỹi

[1 + max
1≤i≤n

Ỹi]

)
θ||λ|| ≥ θT

(
1

n

n∑
i=1

ZiZ
T
i

)
θ||λ||,
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then
1

γn
θT (ū− θ0)(1 + ||λ||Z∗

n) ≥ 1

γn
θT (ū− θ0)[1 + max

1≤i≤n
Ỹi]

≥ θT
(
1

n

n∑
i=1

ZiZ
T
i

)
θ||λ||.

Hence,

||λ||[θTS1θ −
1

γn
θT (ū− θ0)Z

∗
n] ≤

1

γn
θT (ū− θ0),

where

S1 =
1

n

n∑
i=1

ZiZ
T
i

=
1

n

n∑
i=1

(
u(Xi)− θ0 + op(

1√
n
)

)(
u(Xi)− θ0 + op(

1√
n
)

)T

= S + op(
1

nδ
), (1 < δ < 1).

Then we conclude that ||λ|| = Op(
1√
n
) and

max
1≤i≤n

|Ỹi| = Op(
1√
n
)op(

√
n) = op(1).

Then one has

0 =
1

n

n∑
i=1

Zi(1− Ỹi +
Ỹ 2
i

1 + Ỹi

)

= u(Xi)− θ0 − S1λ+
1

n

n∑
i=1

ZiỸ
2
i

1 + Ỹi

.

Note that

1

n

n∑
i=1

||Zi||||Ỹi||2

|1 + Ỹi|
= op(

1√
n
).

Then we have
λ = S(u(Xi)− θ0) + op(

1√
n
) = η + op(

1√
n
).

Under the conditions of Theorem 1, πi = π̃i − 1
n
op(

1√
n
)(u(Xi − θ0)) +

1
n
op(

1√
n
).

Proof: By Lemma 2, we have

πi =
1

n

1

1 + λT [u(Xi)− ū− 1
γn

(θ0 − ū)]

=
1

n

1

1 + (ηT + op(
1√
n
))[u(Xi)− ū− 1

γn
(θ0 − ū)]

=
1

n

1

1 + ηT (u(Xi)− θ0) + op(
1√
n
)(u(Xi)− θ0) + op(

1√
n
)

=
1

n

1

1 + ηT (u(Xi)− θ0)
− 1

n

1

1 + ηT (u(Xi)− θ0)

op(
1√
n
)(u(Xi)− θ0) + op(

1√
n
)

1 + λT [u(Xi)− ū− 1
γn

(θ0 − ū)]

= π̃i −
1

n
op(

1√
n
)(u(Xi − θ0)) +

1

n
op(

1√
n
).

Then we are ready to prove Theorem 1.
Proof of Theorem 1: By Lemma 3 we have

δ̂EEL =

n∑
i=1

πiψ(Xi)

=

n∑
i=1

[π̃i −
1

n
op(

1√
n
)(u(Xi − θ0)) +

1

n
op(

1√
n
)]ψ(Xi)

=

n∑
i=1

π̃iψ(Xi)− op(
1√
n
)
1

n

n∑
i=1

ψ(Xi)(u(Xi)− θ0) + op(
1√
n
)

= ψ̄ − ϕ̄+ op(
1√
n
),
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from which yields the desired result by Theorem 2.2.1 in Wang (2015).

Proof of Theorem 2: Let θn = θ0 + kn(θ̃ − θ0). Then by Taylor expansion,

Vnj(θn) = nUn − (n− 1)U
(−j)
n−1

= n

(
Un(θ0) +

∂Un(θ
∗
0)

∂θ
kn(θ̃ − θ0)

)
−(n− 1)

(
U (−j)

n (θ0) +
∂U

(−j)
n−1 (θ

∗∗
0 )

∂θ
kn(θ̃ − θ0)

)
= Vnj(θ0) + nkn(θ̃ − θ0)

(
∂Un(θ

∗
0)

∂θ
− n− 1

n

∂U
(−j)
n−1 (θ

∗∗
0 )

∂θ

)
,

where θ∗0 and θ∗∗0 are between θ0 and θn. By Theorem 3.1.2 in Li (2016), θ̃ − θ0 = Op(
1√
n
). By (A1), ∂Un(θ∗0 )

∂θ
and

∂U
(−j)
n−1 (θ∗∗0 )

∂θ
are bounded in probability. If nkn → 0 as n→ +∞, then we have

Vnj(θn) = Vnj(θ0) + op(
1√
n
).

Secondly, note that by Lemma 1.2.1 in Lin(2013),

Vnj(θ0) = mh1(Xj ; θ0) +Op(
1√
n
).

Hence we have

Vnj(θn) = mh1(Xj ; θ0) +Op(
1√
n
).

Then we verify the conditions of Theorem 6.1 in Peng(2015) below

max
1≤j≤n

|Vnj(θn)| ≤ max
1≤j≤n

|mh1(Xj ; θ0)|+ 1 = op(
√
n),

1

n

n∑
i=1

Vnj(θn) =
1

n

n∑
i=1

mh1(Xj ; θ0) +Op(
1√
n
) = Op(

1√
n
)

1

n

n∑
i=1

Vnj(θn)V
T
nj(θn) =

m2

n

n∑
j=1

h1(Xj ; θ0)h
T
1 (Xj ; θ0) +Op(

1√
n
)
m

n

n∑
j=1

h1(Xj ; θ0) +Op(
1

n
)

= V ar(h1(X1; θ0)) + op(1).

Hence, by Theorem 6.1 in Peng(2015), we have ξ = op(
1√
n
). Similary τ = op(

1√
n
). Hence in this case, we have

wi =
1

n

1

1 + ξTVni(θn)

=
1

n

1

1 + (τT + op(
1√
n
))(Vni(θ0) + op(

1√
n
))

=
1

n

1

1 + τTVni(θ0)
− 1

n

Vni(θ0)op(
1√
n
) + op(

1√
n
))(

1 + τTVni(θ0)
)(
1 + ξTVni(θn)

)
= w̃i −

1

n

(
Vni(θ0)op(

1√
n
) + op(

1√
n
)

)
,

Then the JEEL-weighted estimator

δ̂JEEL =

n∑
i=1

wiψ(Xi)

= δ̂JEL − op(
1√
n
)
1

n

n∑
i=1

ψ(Xi)V
T
ni + op(

1√
n
)

By Theorem 2.2.3 in Wang (2015), we get the desired result.
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