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ABSTRACT: In this paper we introduce new class of system, so called singularly impulsive or generalized impulsive
dynamical systems with time delay. Dynamics of this system is characterized by the set of differential and difference
equations with time delay, and algebraic equations. They represent the class of hybrid systems, where algebraic equations
represent constraints that differential and difference equations with time delay need to satisfy. In this paper we present
model, assumptions on the model, and two classes of singularly impulsive dynamical systems with delay - time dependent
and state dependent. Further, we present Lyapunov - Krasovskii and Razumikhin stability results for the class of singularly
impulsive dynamical systems with time delay.

1 INTRODUCTION
Modern complex engineering systems as well as biological and physiological systems typically possess a multi-echelon
hierarchical hybrid architecture characterized by continuous-time dynamics at the lower levels of hierarchy and discrete-
time dynamics at the higher levels of the hierarchy. Hence, it is not surprising that hybrid systems have been the subject
of intensive research over the past recent years (see Branicky et al. (1998), Ye et al. (1998 b), Haddad, Chellaboina
and Kablar (2001a-b)). Such systems include dynamical switching systems Branicky (1998), Leonessa et al. (2000),
nonsmooth impact and constrained mechanical systems, Back et al. (1993), Brogliato (1996), Brogliato et al. (1997),
biological systems Lakshmikantham et al. (1989), demographic systems Liu (1994), sampled-data systems Hagiwara and
Araki (1988), discrete-event systems Passino et al. (1994), intelligent vehicle/highway systems Lygeros et al. (1998) and
flight control systems, etc. The mathematical descriptions of many of these systems can be characterized by impulsive
differential equations, Simeonov and Bainov (1985), Liu (1988), Lakshmikantham et al. (1989, 1994), Bainov and
Simeonov (1989, 1995), Kulev and Bainov (1989), Lakshmikantham and Liu (1989), Hu et al. (1989), Samoilenko and
Perestyuk (1995), Haddad, Chellaboina and Kablar (2001a-b). Impulsive dynamical systems can be viewed as a subclass
of hybrid systems.

Motivated by the results on impulsive dynamical systems presented in Haddad, Chellaboina, and Kablar (2001, 2005),
the authors previous work on singular or generalized systems, and results on singularly impulsive dynamical systems
published in Kablar(2003, 2010) we presented new class of singularly impulsive or generalized impulsive dynamical
systems with time delay. It presents novel class of hybrid systems and generalization of impulsive dynamical systems to
incorporate singular nature of the systems and time delays. Extensive applications of this class of systems can be found
in contact problems and in hybrid systems.

We present mathematical model of the singularly impulsive dynamical systems with time delay. We show how it
can be viewed as general systems from which impulsive dynamical systems with time delay, singular continuous-time
systems with time delay and singular dicrete-time systems with time delay, as well as without time delay, follow. Then we
present Assumptions needed for the model and the division of this class of systems to time-dependent and state-dependent
singularly impulsive dynamical systems with time delay with respect to the resetting set.

In this paper for the class of nonlinear singularly impulsive dynamical systems with time delay we develop Lyapunov
- Krasovskii and Razumikhin stability results. Results are further specialized to linear case. Note that for addressing the
stability of the zero solution of a singularly impulsive dynamical system the usual stability definitions are valid. Finally,
we draw some conclusions and define future work.

At first, we establish definitions and notations. Let R denote the set of real numbers, let Rn denote the set of n × 1
real column vectors, let N denote the set of nonnegative integers, and let In or I denote the n × n identity matrix.
Furthermore, let ∂S, Ṡ, S̄ denote the boundary, the interior, and a closure of the subset S ⊂ Rn, respectively. Finally, let
C0 denote the set of continuous functions and Cr denote the set of functions with r continuous derivatives.

2 MATHEMATICAL MODEL OF SINGULARLY IMPULSIVE DYNAMICAL
MODEL WITH TIME DELAY

A singularly impulsive dynamical system with delay consists of three elements:

1. A possibly singular continuous-time dynamical equation with time delay, which governs the motion of the system
between resetting events;
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2. A possibly singular difference equation with time delay, which governs the way the states are instantaneously changed
when a resetting occurs; and

3. A criterion for determining when the states of the system are to be reset.

Mathematical model of these systems is described with
Ecẋ(t) = fc(x(t, τ))+Gc(x(t, τ))uc(t),

(t, x(t, τ), uc(t)) 6∈S, (2.1)

Ed4x(t) = fd(x(t, τ))+Gd(x(t, τ))ud(t),

(t, x(t, τ), uc(t))∈S, (2.2)

yc(t) = hc(x(t, τ))+Jc(x(t, τ))uc(t),

(t, x(t, τ), uc(t)) 6∈S, (2.3)

yd(t) = hd(x(t, τ)+Jd(x(t, τ))ud(t),

(t, x(t, τ), uc(t))∈S, (2.4)

where t ≥ 0, τ > 0, x(0) = x0, x(t, τ) ∈ D ⊂ Rn × N, D is an open set with 0 ∈ D, uc ∈ Uc ⊂ Rmc ,
ud(tk) ∈ Ud ⊂ Rmd , tk denotes kth instant of time at which (t, x(t, τ), uc(t)) intersects S for a particular trajectory
x(t, τ) and input uc(t), yc(t) ∈ Rlc , yd(tk) ∈ Rld , fc : D → Rn is Lipschitz continuous and satisfies fc(0) = 0,
Gc : D → n×mc, fd : D → Rn is continuous and satisfies fd(0) = 0, Gd : D → Rn×md , hc : D → Rlc
and satisfies hc(0) = 0, Jc : D → Rlc×mc , hd : D → Rld and satisfies hd(0) = 0, Jd : D → Rld×md , and
S ⊂ [0,∞) × Rn × Uc is the resetting set. Here, as in Haddad, Chellaboina, and Kablar (2001a) we assume that uc(·)
and ud(·) are restricted to the class of admissible inputs consisting of measurable functions (uc(t), ud(t)) ∈ Uc×Ud for
all t ≥ 0 and k ∈ N[0,t) ≡ k : 0 ≤ tk < t, where the constraint set Uc × Ud is given with (0, 0) ∈ Uc × Ud. We refer
to the differential equation (2.1) as the continuous-time dynamics with time delay, and we refer to the difference equation
(2.2) as the resetting law.

Matrices Ec, Ed may be singular matrices. In case Ec = I , Ed = I , and τ = 0 (2.1)–(2.4) represent standard im-
pulsive dynamical systems described in Haddad, Chellaboina, and Kablar (2001a), and Haddad, Kablar, and Chellaboina
(2000, 2005), where stability, dissipativity, feedback interconnections, optimality, robustness, and disturbance rejection
has been analyzed. In absence of discrete dynamics they specialize to singular continuous-time systems, with further spe-
cialization Ec = I to standard continuous-time systems. If only discrete dynamics is present they specialize to singular
discrete-time systems, with further specialization Ed = I to standard discrete-time systems.

In case Ec = I , Ed = I , and τ 6= 0, (2.1)–(2.4) represent standard impulsive dynamical systems with time delay. In
absence of discrete dynamics they specialize to singular continuous-time systems with time delay, with further special-
ization Ec = I to standard continuous-time systems with time delay. If only discrete dynamics is present they specialize
to singular discrete-time systems with time delay, with further specialization Ed = I to standard discrete-time systems
with time delay.

Therefore, theory of the singularly impulsive or generalized impulsive dynamical systems with time delay once devel-
oped, can be viewed as a generalization of the singular and impulsive dynamical system with time delay theory, unifying
them into more general new system theory.

In what follows is given basic setting and division of this class of systems with respect to the definition of the resetting
sets, accompanied with adequate assumptions needed for the model.

We make the following additional assumptions:
A1. (0, x0, uc0) 6∈ S, where x(0) = x0 and uc(0) = uc0, that is, the initial condition is not in S.
A2. If (t, x(t, τ), uc(t)) ∈ S̄\S then there exists ε > 0 such that, for all 0 < δ < ε, s(t+δ; t, x(t, τ), uc(t+δ)) 6∈ S.
A3. If (tk, x(tk), uc(tk)) ∈ ∂S ∩ S then there exists ε > 0 such that, for all 0 < δ < ε and ud(tk) ∈ Ud,

s(tk + δ; tk, Edx(tk) + fd(x(tk)) +Gd(x(tk))ud(tk), uc(tk + δ)) 6∈ S.
A4. We assume consistent initial conditions (and prior and after every resetting).
Assumption A1 ensures that the initial condition for the resetting differential equation (2.1), (2.2) is not a point of

discontinuity, and this assumption is made for convenience. If (0, x0, uc0) ∈ S, then the system initially resets to
Edx

+
0 = Edx0 + fd(x0) + Gd(x0)ud(0) which serves as the initial condition for the continuous dynamics (2.1). It

follows from A3 that the trajectory then leaves S. We assume in A2 that if a trajectory reaches the closure of S at a point
that does not belong to S, then the trajectory must be directed away from S, that is, a trajectory cannot enter S through a
point that belongs to the closure of S but not to S. Finally, A3 ensures that when a trajectory intersects the resetting set
S, it instantaneously exits S, see Figure 1. We make the following remarks.

Figure 1. Resetting Set.

Remark 2.1. It follows from A3 that resetting removes the pair (tk, xk, uc(tk)) from the resetting set S. Thus, imme-
diately after resetting occurs, the continuous-time dynamics (2.1), and not the resetting law (2.2), becomes the active
element of the singularly impulsive dynamical system.

Remark 2.2. It follows from A1-A3 that no trajectory can intersect the interior of S. According toA1, the trajectory x(t)
begins outside the set S. Furthermore, it follows from A2 that a trajectory can only reach S through a point belonging
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to both S and its boundary. Finally, from A3, it follows that if a trajectory reaches a point S that is on the boundary
of S, then the trajectory is instantaneously removed from S. Since a continuous trajectory starting outside of S and
intersecting the interior of S must first intersect the boundary of S, it follows that no trajectory can reach the interior of
S.

Remark 2.3. It follows from A1-A3 and Remark 1.2 that ∂S ∪ S is closed and hence the resetting times tk are well
defined and distinct.

Remark 2.4. Since the resetting times are well defined and distinct, and since the solutions to (2.1) exist and are unique,
it follows that the solutions of the singularly impulsive dynamical system (2.1), (2.2) also exist and are unique over a
forward time interval.

In Haddad, Chellaboina and Kablar (2001a), the resetting set S is defined in terms of a countable number of functions
nk : Rn → (0 ,∞), and is given by

S = ∪k{(nk (x ), x , uc(nk (x )) : x ∈ Rn}. (2.5)

The analysis of singularly impulsive dynamical systems with time delay and with a resetting set of the form (2.5) can
be quite involved. In particular, such systems exhibit Zenoness, beating, as well as confluence phenomena wherein
solutions exhibit infinitely many transitions in a finite times, and coincide after a given point of time, Haddad, Chellaboina
and Kablar (2001a). In this paper we assume that existence and uniqueness properties of a given singularly impulsive
dynamical system with time delay are satisfied in forward time. Furthermore, since singularly impulsive dynamical
systems of the form (2.1)-(2.4) involve impulses at variable times they are time-varying systems.

Here we will consider singularly impulsive dynamical systems involving two distinct forms of the resetting set S. In
the first case, the resetting set is defined by a prescribed sequence of times which are independent of state x. These
equations are thus called time-dependent singularly impulsive dynamical systems with time delay. In the second case,
the resetting set is defined by a region in the state space that is independent of time. These equations are called state-
dependent singularly impulsive dynamical systems with time delay.

2.1 Time-Dependent Singularly Impulsive Dynamical Systems with Time Delay

Time-dependent singularly impulsive dynamical systems with time delay can be written as (2.1)–(2.4) with S defined as

S = n × Rn × Uc, (2.6)

where

n = t1 , t2 , . . . (2.7)

and 0 < t1 < t2 < . . . are prescribed resetting times. When an infinite number of resetting times are used and tk →∞
as k → ∞, then S is closed. Now (2.1)–(2.4) can be rewritten in the form of the time-dependent singularly impulsive
dynamical system with time delay

Ecẋ(t) = fc(x(t, τ)) +Gc(x(t, τ))uc(t), t 6= tk, (2.8)

Ed4x(t) = fd(x(t, τ)+Gd(x(t, τ))ud(t), t = tk, (2.9)

yc(t) = hc(x(t, τ)) + Jc(x(t, τ))uc(t), t 6= tk, (2.10)

yd(t) = hd(x(t, τ)) + Jd(x(t, τ))ud(t), t = tk. (2.11)

Since 0 6∈ τ and tk < tk+1, τ > 0, it follows that the assumptions A1–A3 are satisfied. Since time-dependent
singularly impulsive dynamical systems with time delay involve impulses at a fixed sequence of times, they are time-
varying systems.

Remark 2.5. Standard continuous-time and discrete-time dynamical systems as well as sampled-data systems can be
treated as special cases of singularly impulsive dynamical systems. For details see [1].

Remark 2.6. The time-dependent singularly impulsive dynamical system with time delay (2.8)–(2.11), with Ec = I and
Ed = I includes as a special case the impulsive control problem addressed in the literature wherein at least one of the
state variables of the continuous-time plant can be changed instantaneously to any given value given by an impulsive
control at a set of control instants τ , Haddad, Chellaboina and Kablar (2001a).

2.2 State-Dependent Singularly Impulsive Dynamical Systems with Time Delay

State-dependent singularly impulsive dynamical systems with time delay can be written as (2.1)–(2.4) with S defined as

S = [0,∞)×Z, (2.12)
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where Z = Zx×Uc and Zx ⊂ Rn. Therefore, (2.1)–(2.4) can be rewritten in the form of the state-dependent singularly
impulsive dynamical system with time delay

Ecẋ(t) = fc(x(t, τ))+Gc(x(t, τ))uc(t),

(x(t, τ), uc(t)) 6∈Z, (2.13)

Ed4x(t) = fd(x(t, τ))+Gd(x(t, τ))ud(t),

(x(t, τ), uc(t))∈Z, (2.14)

yc(t) = hc(x(t, τ))+Jc(x(t, τ))uc(t),

(x(t, τ), uc(t)) 6∈Z, (2.15)

yd(t) = hd(x(t, τ))+Jd(x(t, τ))ud(t),

(x(t, τ), uc(t))∈Z. (2.16)

We assume that (x0, uc0) 6∈ Z , τ > 0, (0, 0) 6∈ Z , and that the resetting action removes the pair (x, uc) from the set Z;
that is, if (x, uc) ∈ Z then (Edx + fd(x) + Gd(x)ud, uc) 6∈ Z , ud ∈ Ud. In addition, we assume that if at time t the
trajectory (x(t, τ), uc(t)) ∈ Z̄\Z , then there exists ε > 0 such that for 0 < δ < ε, (x(t+ τ + δ), uc(t+ δ)) 6∈ Z .

These assumptions represent the specialization of A1–A3 for the particular resetting set (2.12). It follows from these
assumptions that for a particular initial condition, the resetting times τk(x0) are distinct and well defined. Since the
resetting set Z is a subset of the state space and is independent of time, state-dependent singularly impulsive dynamical
systems with time delay are time-invariant systems. Finally, in the case where S ≡ [0,∞)×Rn×Zuc , where Zuc ⊂ Uc
we refer to (2.13)–(2.16) as an input-dependent singularly impulsive dynamical system with time delay. Both these cases
represent a generalization to the impulsive control problem considered in the literature.

3 STABIILITY OF SINGULARLY IMPUSLIVE DYNAMICAL SYSTEMS WITH
TIME DELAY: RAZUMIKHIN STABILITY

We consider linear singular time-invariant systems with single delay

Ecẋ(t) = Acx(t) +Ac1x(t− τ),

(t, x(t, τ)) 6∈ Z, (3.17)

Edx(k + 1) = Adx(k) +Ad1x(k − τ),

(t, x(t, τ)) ∈ Z, (3.18)

where x ∈ Rn, Ac, Ad, Ac1, Ad1 are given n× n real matrices, and Ec, Ed may be singular matrices. The usual initial
condition is in the form of

x0(t) = φ(t), (t, x(t, τ)) 6∈ Z, (3.19)

for t, k ∈ [−τ, 0], where φ is a continuous function.
We will use Razumikhin Theorem and Lyapunov-Krasovskii Stability Theorem to discuss the stability of the system.

We will restrict ourselves to using the bounded quadratic Lyapunov function or Lyapunov-Krasovski functional, and aim
at arriving at stability criteria that can be written in the form of Linear Matrix Inequalities (LMI) or a closely related form.
Efficient numerical methods are available to solve LMI’s.

We state here two important results we will need in the rest of the paper.
Since we use the bounded quadratic Lyapunov function, we only need to use the following restricted form of the

Razumikhin Theorem given for singularly impulsive dynamical systems.

Proposition 3.1. A singularly impulsive dynamical system with time-delay, with maximum time delay τ , is asymptotically
stable if there exists a bounded quadratic Lyapunov function V (x) such that for some ε > 0, it satisfies Lyapunov function
condition

V (x(t)) ≥ ε‖Ecx(t)‖2, (t, x(t, τ)) 6∈ Z (3.20)

V (x(k)) ≥ ε‖Edx(k)‖2, (t, x(t, τ)) ∈ Z (3.21)

and its derivative along the system trajectory V̇ (x(t)) satisfies Razumikhin derivative condition

V̇ (x(t)) ≤ −ε‖Ecx(t)‖2, (t, x(t, τ)) 6∈ Z, (3.22)

∆V (x(k)) ≤ −ε‖Edx(k)‖2, (t, x(t, τ)) ∈ Z, (3.23)

whenever

V (x(t+ ξ)) ≤ pV (x(t)), −τ ≤ ξ ≤ 0,

(t, x(t, τ)) 6∈ Z, (3.24)

V (x(k + ξ)) ≤ pV (x(k)), −τ ≤ ξ ≤ 0,

(t, x(t, τ)) ∈ Z,
(3.25)

for some constant p > 1.
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Similarly, we can state a restricted version of Lyapunov-Krasovskii Stability Theorem developed for the class of
singularly impulsive dynamical systems.

Proposition 3.2. A singularly impulsive dynamical system with time-delay system is asymptotically stable if there exists
a bounded quadratic Lyapunov-Krasovskii functional V (φ) such that for some ε > 0, it satisfies Lyapunov-Krasovskii
functional condition

V (φ(t)) ≥ ε‖Ecφ(0)‖2, (t, x(t, τ)) 6∈ Z, (3.26)

V (φ(k)) ≥ ε‖Edφ(0)‖2, (t, x(t, τ)) ∈ Z, (3.27)

and its derivative along the system trajectory,

V̇ (φ(t)) = V̇ (x(t))|x(t)=φ(t), (t, x(t, τ)) 6∈ Z, (3.28)

∆V (φ(k)) = ∆V (x(k))|x(k)=φ(k), (t, x(t, τ)) ∈ Z, (3.29)

satisfies Lyapunov-Krasovskii derivative condition

V̇ (x(t)) ≤ −ε‖Ecφ(0)‖2, (t, x(t, τ)) 6∈ Z, (3.30)

δV (x(k)) ≤ −ε‖Edφ(k0)‖2, (t, x(t, τ)) ∈ Z, (3.31)

4 DELAY-INDEPENDENT STABILITY CRITERIA BASED ON RAZUMIKHIN
THEOREM

4.1 Systems with single delay
Consider the system with single delay described by (3.17)–(3.18). We will use the Razumikhin Theorem to obtain a
simple stability condition using the Lyapunov function

V (x(t)) = x(t)TET
c PEcx(t), (t, x(t, τ)) 6∈ Z (4.32)

V (x(k)) = x(k)TET
d PEcx(k), (t, x(t, τ)) ∈ Z. (4.33)

Proposition 4.1. The system described by (3.17)-(3.18) is asymptotically stable if there exist a scalar α > 0, and a real
symmetric matrix P such that[ AT

c PEc + ET
c PAc + αpET

c PEc ET
c PAc1

AT
c PEc αET

c PEc

]
< 0,

(t, x(t, τ)) 6∈ Z,
(4.34)

and [ AT
dPAd − ET

d PEd + αpET
d PEd AT

dPAd1

AT
d1PAd αET

d PEd +AT
d1PAd1

] < 0,

(t, x(t, τ)) ∈ Z,
(4.35)

Proof. We will use Proposition (3.1). Choose Lyapunov function V as in (4.32)–(4.33). Since (4.34)–(4.35) implies
ET

c PEc > 0, andET
d PEd > 0 we can conclude that for some sufficiently small ε > 0, the Lyapunov function condition

V (x(t)) ≥ ε‖Ecx(t)‖2, (t, x(t, τ)) 6∈ Z, (4.36)

V (x(k)) ≥ ε‖Edx(t)‖2, (t, x(t, τ)) ∈ Z, (4.37)

is satisfied. Now consider the derivative of V (x) along the trajectory of the system 3.17–3.18,

V̇ (x(t))=
d

dt
V (x(t))=2x(t)T(t)ET

c P [Acx(t)

+Ac1x(t− τ)] (t, x(t, τ)) 6∈ Z, (4.38)

∆V (x(k))= V (x(k + 1))− V (x(k)) =

x(k)T(t)AT
dPAdx(k)

+x(k)TAT
dPAd1x(k − τ)

+x(k − τ)TAT
d1PAdx(k)

+x(k − τ)TAT
d1PAd1x(k − τ)

−x(k)TET
d PEdx(k)

(t, x(t, τ)) ∈ Z, (4.39)
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Whenever x satisfies

V (x(t+ θ)) < pV (x(t)) for all − τ ≤ θ ≤ 0,

(t, x(t, τ)) 6∈ Z, (4.40)

V (x(k + θ)) < pV (x(k)) for all − τ ≤ θ ≤ 0,

(t, x(t, τ)) ∈ Z, (4.41)

for some p > 1, we can conclude that for any α > 0

V̇ (x(t)) ≤ 2xT(t)ET
c P [Acx(t) +Ac1x(t− τ)]

+α[pxT(t)ET
c PEcx(t)− xT(t− τ)ET

c PEcx(t− τ)]

=φT
0

[ AT
c PEc + ET

c PAc + αpET
c PEc ET

c PAc1

AT
c1PEc αET

c PEc +AT
d1PAd1

]
φ0,

(t, x(t, τ)) 6∈ Z,
(4.42)

∆V (x(k)) ≤
x(k)T(t)AT

dPAdx(k) + x(k)TAT
dPAd1x(k − τ)

+x(k − τ)TAT
d1PAdx(k) + x(k − τ)TAT

d1PAd1x(k − τ)

+α[pxT(k)ET
d PEdx(k)− xT(k − τ)ET

d PEdx(k − τ)]

= φT
0

[ AT
dPAd − ET

d PEd + αpET
d PEd AT

dPAd1

AT
d1PAd αET

d PEd + +AT
d1PAd1

]
φk0 ,

(t, x(t, τ)) ∈ Z,
(4.43)

where

φ0 = ( xT(t) xT(t− τ) )T, (t, x(t, τ)) 6∈ Z, (4.44)

φk0 = ( xT(k) xT(k − τ) )T, (t, x(t, τ)) ∈ Z, (4.45)

The inequality (4.34)–(4.35) implies that for some sufficiently small δ > 0, p = 1 + δ[ AT
c PEc + ET

c PAc + αpET
c PEc ET

c PAc1

AT
c1PEc αET

c PEc

]
< 0,

(t, x(t, τ)) 6∈ Z, (4.46)

[ AT
dPAd − ET

d PEd + αpET
d PEd AT

dPAd1

AT
d1PAd αET

d PEd + +AT
d1PAd1

]
< 0,

(t, x(t, τ)) ∈ Z, (4.47)

which, according to (4.42)–(4.43), implies that the Razumikhin derivative condition

V̇ (x(t)) ≤ −ε‖Ecx(t)‖2, (t, x(t, τ)) 6∈ Z, (4.48)

∆V (x(k)) ≤ −ε‖Edx(k)‖2, (t, x(t, τ)) ∈ Z, (4.49)

is satisfied. According to Proposition (3.1), singularly impulsive system (3.17)–(3.18) is asymptotically stable. �

4.2 Systems with distributed delay
Now consider singularly impulsive dynamical system with distributed delays

Ecẋ(t) = Acx(t) +

∫ 0

τ

Ac1x(t+ θ)dθ,

(t, x(t, τ)) 6∈ Z, (4.50)

Edx(k + 1) = Adx(k) +

0∑
τ

Ad1x(k + θ),

(t, x(t, τ)) ∈ Z, (4.51)

where Ac, Ad are given constant matrices and Ac1, Ad1 are given matrix valued function of θ ∈ [τ, 0]. We can again
use Lyapunov function V (x) = xTET

c,dPEc,dx to study the stability of the system and conclude the following.
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Proposition 4.2. The system with distributed delays described by (4.50)–(4.51) is asymptotically stable if there exist
symmetric matrix P , and scalar function

α(θ) > 0, for ≤ θ ≤ τ, (t, x(t, τ)) 6∈ Z, (4.52)

α(θ) > 0, for ≤ θ ≤ τ, (t, x(t, τ)) ∈ Z, (4.53)

and a symmetric matrix functions Rcθ) and Rdθ) such that

AT
c PEc + ET

c PAc +
∫ 0

−τ Rc(θ)dθ < 0, (4.54)

AT
dPAd + ET

d PEd +
∑0

−τ Rd(θ) < 0, (4.55)( pαET
c PEc −Rc(θ) ET

c PAc1(θ)
Ac1(θ)TPEc −αET

c PEc

)
< 0

for 0 ≤ θ ≤ τ. (4.56)( pαET
d PEd −Rd(θ) AT

dPAd1(θ)
Ad1(θ)TPAd −αET

d PEd + +AT
d1PAd1

)
< 0

for 0 ≤ θ ≤ τ. (4.57)

Proof. Use the Razumikhin Theorem in a similar way to the proof of Proposition ??. Since (4.56)–(4.57) implies
ET

c PEc > 0 and ET
d PEd > 0, we can conclude that the Lyapunov function V (x) = xTET

c,dPEc,dx satisfies

V (x) ≥ ε‖Ecx‖2, (t, x(t, τ)) 6∈ Z, (4.58)

V (x) ≥ ε‖Ecx‖2, (t, x(t, τ)) ∈ Z, (4.59)

for sufficiently small ε > 0. Also, let p > 1. Whenever

X(x(t+ θ)) < pV (x(t)) for all − τ ≤ θ ≤ 0,

(t, x(t, τ)) 6∈ Z, (4.60)

X(x(k + θ)) < pV (x(k)) for all − τ ≤ θ ≤ 0,

(t, x(t, τ)) 6∈ Z, (4.61)

is satisfied, we can calculate

V̇ (x(t)) = 2xT(t)ET
c P [Acx(t) +

∫ 0

−τ
Ac1(θ)x(t+ θ)dθ]

≤ 2xT(t)ET
c P [Acx(t) +

∫ 0

−τ
Ac1(θ)x(t+ θ)dθ]

+

∫ 0

−τ
α[pxT(t)ET

c PEcx(t)− xT(t+ θ)ET
c pEcx(t+ θ)]dθ

= xT(t)[AT
c PEc + ET

c PAc +

∫ 0

−τ
R(θ)dθ]x(t)

+

∫ 0

τ

( xT(t) xT(t+ θ) )

·
( pαET

c PEc −R(θ) ET
c PAc1(θ)

Ac1(θ)TPEc −αET
c PEc

)( x(t)
x(t+ θ)

)
dθ, (t, x(t, τ)) 6∈ Z, (4.62)
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∆V (x(k)) = V (x(k + 1)− V (x(k)) =

x(k)TAT
dPAdx(k) + x(k)TAT

dP
∑

Ad1x(k + θ)

+
∑

x(k + θ)TAT
dPAdx(k)

+
∑

x(k + θ)TAT
dP
∑

Ad1x(k + θ)− x(k)TEdPEdx(k)

≤ x(k)TAT
dPAdx(k) + x(k)TAT

dP
∑

Ad1x(k + θ)

+
∑

x(k + θ)TAT
dPAdx(k) +

∑
x(k + θ)TAT

dP
∑

Ad1x(k + θ)

−x(k)TEdPEdx(k) +

0∑
−τ

α[pxT(k)ET
d PEdx(t)

−xT(k + θ)ET
d pEdx(t+ θ)]

= xT(k)[AT
dPAd − ET

d PEd +

0∑
−τ

Rd(θ)]x(k)

+

0∑
τ

( xT(k) xT(k + θ) )

·
( pαET

d PEd −Rd(θ) AT
dPAd1(θ)

Ad1(θ)TPAd −αET
d PEd +AT

dP
∑
Ad1

)( x(k)
x(k + θ)

)
dθ, (t, x(t, τ)) ∈ Z, (4.63)

With the above expression, and the fact that p > 1 can be arbitrarily close to 1, (4.54)–(4.55), and (4.56)–(4.57) imply

V̇ (x(t)) ≤ −ε‖Ecx(t)‖2, (t, x(t, τ)) 6∈ Z, (4.64)

∆V (x(k)) ≤ −ε‖Edx(t)‖2, (t, x(t, τ)) ∈ Z, (4.65)

for some sufficiently small ε > 0. Therefore, the system is asymptotically stable according to Proposition 3.2. �

5 DELAY-DEPENDENT STABILITY CRITERIA BASED ON RAZUMIKHIN
THEOREM

Consider again system (3.17)–(3.18) reformulated for this section for simplicity of exposition as:

Ecẋ(t) = Acx(t) +Ac1x(t− τ), (t, x(t, τ)) 6∈ Z, (5.66)

Ed∆x(k) = Adx(k) +Ad1x(k − τ), (t, x(t, τ)) ∈ Z, (5.67)

with initial condition (3.19), where the initial function is φ ∈ C([−τ, 0],Rn). With the observation that

Ecx(t− τ) = Ecx(t)−
∫ 0

−τ
Ėcx(t+ θ)dθ

= Ecx(t)−
∫ 0

−τ
[Acx(t+ θ) +Ac1x(t− τ + θ)]dθ,

(t, x(t, τ)) 6∈ Z, (5.68)

and

Edx(k − τ) = Edx(k)−
0∑

−τ

δEdx(k + θ)

= Edx(k)−
0∑

−τ

[Adx(k + θ) +Ad1x(k − τ + θ)],

(t, x(t, τ)) ∈ Z, (5.69)

for t, k ≥ τ , we can write the system (5.66)–(5.67) as

Ecẋ(t) = [Ac +Ac1]x(t)

+

∫ 0

−τ
[−Ac1Acx(t+ θ) = Ac1Ac1

x(t− τ + θ)]dθ, (t, x(t, τ)) ∈ Z,
(5.70)
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and

Ed∆x(k) = [Ad +Ad1]x(k)

+

0∑
−τ

[−Ad1Adx(k + θ) = Ad1Ad1

x(k − τ + θ)], (t, x(t, τ)) ∈ Z,
(5.71)

with initial condition

x(θ) = ψ(θ), = tau ≤ θτ (5.72)

where

ψ(θ) =
{ φ(θ) −τ ≤ θ ≤ 0

solution of (5.66) with i.c. (3.17) 0 < θ ≤ τ ,
}

(t, x(t, τ)) 6∈ Z,

(5.73)

and

ψ(θ) =
{ φ(θ) −τ ≤ θ ≤ 0

solution of (5.67) with i.c. (3.18) 0 < θ ≤ τ

}
(5.74)

Therefore, the system described by (3.17)–(3.18) and (3.19) is embedded in the system described by (5.70)–(5.71) and
(5.72) without the initial condition constraint. Since this is a time-invariant system we can shift the initial time and write
the system in a more standard form

ẏ(t) = Ācy(t) +

∫ 0

−2τ

Āc(θ)y(t+ θ)dθ,

(t, x(t, τ)) 6∈ Z, (5.75)

∆y(k) = Ādy(k) +

0∑
−2τ

Ād(θ)y(k + θ),

(t, x(t, τ)) ∈ Z, (5.76)

(5.77)

where

{ Āc = Ac +Ac1

Ā(θ) = −Ac1Ac θ ∈ [−τ, 0]
Ā(θ) = −Ac1Ac1 θ ∈ [−2τ,−τ)

(t, x(t, τ)) 6∈ Z, (5.78)

and

{ Ād = Ad +Ad1

Ād(θ) = −Ad1Ad θ ∈ [−τ, 0]
Ād(θ) = −Ad1Ad1 θ ∈ [−2τ,−τ)

(t, x(t, τ)) ∈ Z, (5.79)

with initial condition

y(θ) = ψ(θ), −2τ ≤ θ ≤ 0. (5.80)

The stability of the system represented by (5.75) to (5.80) implies the stability of the original system. This model
transformation also introduces additional dynamics which are more complicated and will not be discussed here.

Since the transformed system is one with distributed delay, we can use Proposition 4.2 to derive the stability condition,
which, of course, is sufficient for the stability of the original system.

Proposition 5.1. The system described by (3.17)–(3.18) is asymptotically stable if there exist real scalars α0 > 0 ,
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α1 > 0 and real symmetric matrices P > 0, R0, R1, such that

[ET
c P (Ac+Ac1)+(Ac+Ac1)TPEc]+τ(Rc0+Rc1) < 0,

(t, x(t, τ)) 6∈ Z (5.81)

[AT
dP (Ad+Ad1)+(Ad+Ad1)TPAd]+τ(Rd0+Rd1)<0,

(t, x(t, τ)) ∈ Z
(5.82)[ αkET

c PEc −Rk −ET
c PAc1Ak

AT
kA

T
c1PEc −αkET

c PEc

]
< 0, k = 0, 1.

(t, x(t, τ)) 6∈ Z, (5.83)[ αkET
d PEd −Rdk −AT

dPAd1Adk

AT
dkA

T
d1PAd −αkET

d PEd +AT
dP
∑
Ad1,

]
< 0, k = 0, 1.

(t, x(t, τ)) ∈ Z,
(5.84)

Proof. We only need to prove the stability of the transformed system described by (5.75) to (5.79). Using Proposition
4.2, it can be concluded that the system is asymptotically stable if there exist α(θ), P , and Rc(θ), Rd(θ) to satisfy

ET
c PĀc + Āc

T
PEc +

∫ 0

−2τ

Rc(θ)dθ < 0,

(t, x(t, τ)) 6∈ Z,
(5.85)

AT
dPĀd + Ēd

T
PEd +

0∑
−2τ

Rd(θ) < 0,

(t, x(t, τ)) ∈ Z,
(5.86)( α(θ)ET

c PEc −Rc(θ) ET
c PA(θ)

A(θ)TPEc α(θ)ET
c PEc

)
<0,

−2τ ≤ θ < 0. (t, x(t, τ)) 6∈ Z,
(5.87)( α(θ)ET

d PEd −Rd(θ) AT
dPA(θ)

A(θ)TPAd α(θ)ET
d PEd +AT

dP
∑
Ad1

)
<0,

−2τ ≤ θ < 0. (t, x(t, τ)) ∈ Z,
(5.88)

Choosing the following piecewise constant (matrix) functions

α(θ) =
{ α0 −τ ≤ θ < 0,
α1 −2τ ≤ θ < −τ, ,

(t, x(t, τ)) 6∈ Z, (5.89)

Rc(θ) =
{ Rc0 −τ ≤ θ < 0,
Rc1 −2τ ≤ θ < −τ, ,

(t, x(t, τ)) 6∈ Z (5.90)

and

α(θ) =
{ α0 −τ ≤ θ < 0,
α1 −2τ ≤ θ < −τ, ,

(t, x(t, τ)) ∈ Z, (5.91)

Rd(θ) =
{ Rc0 −τ ≤ θ < 0,
Rc1 −2τ ≤ θ < −τ, ,

(t, x(t, τ)) ∈ Z, (5.92)

completes the proof. �

The stability criterion in Proposition 5.1 depends on the time delay τ and is therefore delay-dependent. We can
eliminate the arbitrary matrices R0 and R1 among the three matrix inequalities (5.81) to (5.84) to arrive at the following
equivalent form.
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Corollary 5.1. The system described by (3.17)–(3.18) is asymptotically stable if there exist real symmetric matrix P > 0
and real scalars alpha0, α1 > 0 such that

( Mc −ET
c PAc1Ac −ET

c PA
2
c1

−AT
c A

T
c1PEc −α0E

T
c PEc 0

−(A2
c1)TPEc 0 −α1E

T
c PEc

)
< 0,

(t, x(t, τ)) 6∈ Z, (5.93)

and

( Md −AT
dPAd1Ad −AT

dPA
2
d1

−AT
dA

T
d1PAd −α0E

T
d PEd 0

−(A2
d1)TPEd 0 −α1E

T
d PEd

)
< 0,

(t, x(t, τ)) ∈ Z,
(5.94)

where

Mc=
1

τ
[ET

c P (Ac+Ac1)+(Ac+Ac1)TPEc]+(α0+α1)P,

(t, x(t, τ)) 6∈ Z, (5.95)

Md=
1

τ
[AT

dP (Ad+Ad1)+(Ad+Ad1)TPAd]+(α0+α1)P,

(t, x(t, τ)) ∈ Z,
(5.96)

Proof. Start with dividing (5.81)–(5.82) by τ , and eliminating Rc0 and Rd0 among the resulting matrix inequality and
(5.83)–(5.84) for k = 1. Details of proof are left for exercise. �

6 CONCLUSION
In this paper we have presented new class of singularly impulsive dynamical systems with time delay. For this class
systems we have developed asymptotic stability results by using Razumikhin stability theorem.

7 FUTURE WORK
In future work we will develop stability results for the class of singularly impulsive dynamical systems based on Lyapunov
- Krasovskii stability theorem.
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