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ABSTRACT: We survey recent developments on conformal and holomorphic mappings of once-holed tori into Riemann
surfaces of positive genus. We are mainly concerned with the sets of marked once-holed tori which allow handle-
preserving conformal and holomorphic mappings into a given marked Riemann surface.

1 INTRODUCTION
By a once-holed torus we mean a noncompact Riemann surface of genus one with exactly one (Kerékjártó-Stoı̈low)
boundary component. For example, the Riemann surface obtained from a compact Riemann surface of genus one, or a
torus, by removing one point is a once-holed torus, which will be called a once-punctured torus. Though all once-holed
tori are homeomorphic to one another, no once-punctured torus is conformally equivalent to a once-holed torus which is
not a once-punctured torus.

By the general uniformization theorem every Riemann surface of genus zero is conformally equivalent to a plane
domain. Thus the core of the theory of Riemann surfaces should be occupied by studies of Riemann surfaces of positive
genus. Once-holed tori are the simplest among the Riemann surfaces of positive genus, and every Riemann surface of
positive genus includes a once-holed torus as a subdomain. Once-holed tori should play a role in the study of Riemann
surfaces similar to that played by open disks for function theory on plane domains.

A topological condition on a holomorphic mapping of a Riemann surface into another sometimes places strong re-
strictions on the mapping or the Riemann surfaces. In this paper we are concerned with handle-preserving holomorphic
mappings of once-holed tori into Riemann surfaces of positive genus. To be more precise we make some definitions.

A Riemann surface R of positive genus has one or more handles. A handle of R is specified by an ordered pair {a, b}
of simple loops a and b on R whose intersection number a× b is equal to one. Such a pair is called a mark of handle of
R. A marked Riemann surface Y means a pair (R,χ), where R is a Riemann surface of positive genus and χ = {a, b}
is a mark of handle of R.

Let Y ′ = (R′, χ′), χ′ = {a′, b′}, be another marked Riemann surface. If a holomorphic mapping f : R → R′ maps
a and b onto loops freely homotopic to a′ and b′ on R′, respectively, then we say that f is a holomorphic mapping of Y
into Y ′ and use the notation f : Y → Y ′; we consider that f preserves the handles of R and R′ specified by χ and χ′.
If, in addition, f : R→ R′ is injective, then f : Y → Y ′ is said to be conformal.

Let T be the set of marked once-holed tori, where two marked once-holed tori are identified if there is a conformal
mapping of one onto the other. For a marked Riemann surface Y denote by Ta[Y ] (resp. Tc[Y ]) the family of marked
once-holed tori X such that there is a holomorphic (resp. conformal) mapping of X into Y . We are concerned with the
sets Ta[Y ] and Tc[Y ], and survey recent developments. Extremal lengths will play a central role.

2 MARKED TORI
2.1 Moduli Disks
Bochner pointed out that every Riemann surface of finite genus can be conformally embedded into a compact Riemann
surface of the same genus (Bochner, 1928). He applied the general uniformization theorem. Shiba introduced conformal
embeddings called hydrodynamic continuations (Shiba, 1984; Shiba & Shibata, 1987), and showed their extremal prop-
erties (Shiba, 1987; Shiba, 1988; Shiba, 1989). Hydrodynamic continuations are a generalization of extremal parallel
slit mappings on Riemann surfaces of genus zero to the case of higher genus. In this section we apply the results to
once-holed tori.

Let H denote the upper half plane: H = {z ∈ C | Im z > 0}. For each τ ∈ H let Gτ be the additive group generated
by 1 and τ , and set Tτ = C/Gτ . We equip Tτ with conformal structure so that the natural projection πτ : C → Tτ is
holomorphic. Then Tτ is a torus, that is, a compact Riemann surface of genus one. In general, let [z1, z2] stands for the
segment joining z1 and z2. The projection πτ maps [0, 1] and [0, τ ] onto simple loops aτ and bτ on Tτ , respectively,
which make a mark χτ of handle of Tτ . The correspondence τ 7→ Xτ := (Tτ , χτ ) defines a bijection of H onto the
space of marked tori. The modulus of a marked torus is, by definition, the point of H corresponding to the marked torus.
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Let X be a marked once-holed torus. There is a conformal mapping of X into a marked torus by Bochner’s theorem.
However, there may be two or more marked tori into which X can be conformally embedded. Let ∆(X) denote the set
of τ ∈ H for which there is a conformal mapping of X into Xτ .

Theorem 1 (Shiba, 1987). The set ∆(X) is a closed disk or a point in H.

The disk ∆(X) will be referred to as the moduli disk ofX . Let τ∗ and ρ be the center and radius of ∆(X), respectively,
where a singleton is considered as a closed disk of radius 0. If ρ = 0, then X is a marked once-punctured torus, and is
conformally embedded into Xτ∗ uniquely up to conformal automorphisms of Xτ∗ . If ρ > 0, then X is not a marked
once-punctured torus. Conformal mappings of X into the marked tori corresponding to the boundary points of ∆(X) are
of special character. Each point τ on the boundary ∂∆(X) is expressed as τ = τ∗ − iρeiπt for some t ∈ R. Then X is
conformally embedded into Xτ in a unique manner up to conformal automorphisms of Xτ . Moreover, if ιτ : X → Xτ
is conformal, then ιτ (X) = Xτ \ πτ (γ) for some line segment γ of positive length with inclination πt/2 (Shiba, 1987).
In particular, if τ is the bottom point of ∆(X), that is, if τ minimizes the imaginary part in ∆(X), then t = 0 and hence
ιτ (X) is a horizontal slit domain of Xτ .

For any interior point τ of ∆(X) there are τ0, τ1 ∈ ∂∆(X) such that the segment [τ0, τ1] is a diameter of ∆(X) and
that τ = (1 − s)τ0 + sτ1 for some s ∈ (0, 1). Let π be a holomorphic universal covering map of the unit disk D onto
X . Each ιτj induces a holomorphic mapping ι̃τj : D → C such that πτj ◦ ι̃τj = ιτj ◦ π. The convex combination
ι̃τ := (1− s)ι̃τ0 + sι̃τ1 induces a conformal mapping ιτ : X → Xτ with πτ ◦ ι̃τ = ιτ ◦π; if τ = τ∗, then τ0 and τ1 are
not uniquely determined, but ιτ does not depend on the choice of τ0 and τ1. The complement Xτ \ ιτ (X) is the closure
of a convex domain on Xτ . The mapping ιτ possesses an interesting extremal property (see Theorem 3 below).

Let D be the set of closed disks in H; recall that a singleton is regarded as a closed disk of radius 0. Then the
correspondence ∆ : X 7→ ∆(X) is a mapping of the space T of marked once-holed tori into D.

Theorem 2 (Masumoto, 1995). The mapping ∆ : T→ D is bijective.

Thus two marked once-holed are identical if and only if their moduli disks coincides with each other. Furthermore, for
any closed disk D in H there is a marked once-holed torus whose moduli disk is exactly D. Note that if X is a marked
once-punctured torus, then ∆(X) is a singleton, and vice versa.

2.2 Area Theorems
Let X be a marked once-holed torus. For each τ ∈ ∆(X) let Cτ (X) denote the set of conformal embeddings of X into
Xτ . The natural projection πτ : C → Xτ induces a flat metric on Xτ . For ι ∈ Cτ (X) the area Area

(
Xτ \ ι(X)

)
of

Xτ \ ι(X) with respect to the metric will be denoted by A(ι). Set Aτ (X) = supA
(
Cτ (X)

)
.

Theorem 3 (Shiba, 1993). Let τ∗ and ρ be the center and radius of ∆(X), respectively. Suppose that ρ > 0. Then

Aτ (X) =
ρ2 − r2

2ρ

for each τ ∈ ∆(X), where r = |τ − τ∗|. The conformal mapping ιτ : X → Xτ attains the supremum Aτ (X).

In fact, any conformal mapping ι : X → Xτ that maximizes A(ι) in Cτ (X) differs from ιτ by a conformal automor-
phism of Xτ . Note that the function τ 7→ Aτ (X) on ∆(X) attains its maximum at the center τ∗.

Let R be a Riemann surface of genus zero, and fix a holomorphic local coordinate z around p0 ∈ R with z(p0) = 0.
Let C(R) be the family of conformal mappings ι of R into the Riemann sphere Ĉ := C ∪ {∞} such that

ι(z) =
1

z
+ a1z + a2z

2 + · · ·

near p0. We denote the coefficient a1 by a(ι), and set ∆(R) = {a(ι) | ι ∈ C(R)}. A theorem due to Grötzsch claims that
∆(R) is a closed disk in C. Its boundary ∂∆(R) is described by the first coefficients of extremal parallel slit mappings
on R (Grötzsch, 1932). Schiffer showed that the average of the extremal horizontal and vertical slit mappings is again a
conformal mapping in C(R), which maximizes the area of the complement of the image (Schiffer, 1943). Thus Theorem 1
and part of Theorem 3 are analogues of the classical results. To each conformal mapping of a marked once-holed torusX
into a marked torus there corresponds an integrable holomorphic differential onX . This fact enables us to apply classical
methods to the study of conformal mappings into tori.

The moduli disk ∆(X) of a marked once-holed torus X is also a disk with respect to the hyperbolic metric on H,
the complete conformal metric with curvature −1. If we choose the ratio B(ι) := A(ι)/Area(Xτ ) = Area

(
Xτ \

ι(X)
)
/Area(Xτ ) of areas instead of A(ι), then we obtain the following striking result. Set Bτ (X) = supB

(
Cτ (X)

)
.

Theorem 4 (Shiba, 1993). Let τ∗h and ρh be the hyperbolic center and radius of ∆(X), respectively. Suppose that
ρh > 0. Then

Bτ (X) =
cosh ρh − cosh rh

sinh ρh

for each τ ∈ ∆(X), where rh is the hyperbolic distance between τ and τ∗h . The conformal mapping ιτ : X → Xτ
attains the supremum Bτ (X).
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Observe that τ 7→ Aτ (X) is the reciprocal of the density of the hyperbolic metric on the interior of ∆(X) while
τ 7→ Area(Xτ ) = Im τ is the reciprocal of the density of the hyperbolic metric on H. Thus τ 7→ Bτ (X) =
Aτ (X)/Area(Xτ ) is the quotient of hyperbolic densities. We can apply this fact to derive Theorem 4 from Theorem 3
(Masumoto & Shiba, 1995).

For any marked once-holed torus X we can construct a family {Xs}05s51 of marked once-holed tori with X0 = X
such that the moduli disk ∆(Xs) shrinks continuously and tends to a point as s → 1. This enables us to determine the
possible values of complementary areas: A

(
Cτ (X)

)
=
[
0, Aτ (X)

]
andB

(
Cτ (X)

)
=
[
0, Bτ (X)

]
for all τ ∈ ∆(X). It

follows that for each interior point τ of ∆(X) there are uncountably many conformal mappings ofX intoXτ (Masumoto,
1994).

2.3 Extremal Lengths
Let Γ be a family of curves on a Riemann surface R. For a linear density ρ = ρ(z) |dz|, z = x+ iy, on R set

Lρ(Γ) = inf
γ∈Γ′

∫
γ

ρ(z) |dz| and Aρ =

∫∫
R

|ρ(z)|2 dx dy,

where Γ′ is the subfamily consisting of locally rectifiable curves in Γ. The extremal length of Γ is, by definition,
supρ Lρ(Γ)2 /Aρ, where the supremum is taken over all linear densities ρ on R such that Lρ(Γ) and Aρ are not si-
multaneously 0 or +∞. Extremal lengths are invariant under conformal mappings, that is, if f : R → R′ is conformal,
then the extremal length of the image family f(Γ) is equal to that of Γ. Also, the extremal length is decreasing, that is, if
a curve family Γ1 includes another curve family Γ2, then the extremal length of Γ1 does not exceed that of Γ2.

Let X = (T, χ), where χ = {a, b}, be a marked once-holed torus. The extremal length λ(X) of the free homotopy
class of a is called the basic extremal length of X . It is equal to the extremal length of the singular homology class
represented by a. If we set ȧ = b and ḃ = a−1, then we obtain another mark χ̇ = {ȧ, ḃ} of handle of T . Also, if ä is a
simple loop freely homotopic to ab−1 and b̈ is identical with a, then χ̈ = {ä, b̈} is again a mark of handle of T . Setting
Ẋ = (T, χ̇) and Ẍ = (T, χ̈), we define a point Λ(X) of R3

+ by Λ(X) =
(
λ(X), λ(Ẋ), λ(Ẍ)

)
, where R+ denotes the

set of nonnegative real numbers: R+ = [0,+∞).
In general, for A > 0 set

U(A) =

{
z ∈ H

∣∣∣∣ Im z >
1

A

}
, U̇(A) =

{
z ∈ H

∣∣∣∣ Im(− 1

z

)
>

1

A

}
, Ü(A) =

{
z ∈ H

∣∣∣∣ Im 1

1− z >
1

A

}
.

The set U(A) is a half plane while U̇(A) and Ü(A) are open disks of radius A/2 tangent to the real line at 0 and
1, respectively. If τ is the bottom point of the moduli disk ∆(X) of a marked once-holed torus X , then it is easy to
verify that the basic extremal length λ(X) is exactly 1/ Im τ since X is realized as a horizontal slit domain of Xτ . This
observation yields the following characterization of ∆(X) in terms of Λ(X):

Theorem 5 (Masumoto, 1994). Let X be a marked once-holed torus, and set U = U
(
λ(X)

)
, U̇ = U̇

(
λ̇(X)

)
and

Ü = Ü
(
λ̈(X)

)
.

(i) If ∂U ∩ ∂U̇ ∩ ∂Ü 6= ∅, then ∆(X) = ∂U ∩ ∂U̇ ∩ ∂Ü .
(ii) If ∂U ∩ ∂U̇ ∩ ∂Ü = ∅, then U ∩ U̇ ∩ Ü is a nonempty circular triangle and ∆(X) is its inscribed disk.

The hyperbolic diameter of ∆(X) is equal to log
{
−Q
(
Λ(X)

)
/4
}

, where Q is the quadratic form of ξ =
(ξ1, ξ2, ξ3) ∈ R3 defined by

Q(ξ) = ξ2
1 + ξ2

2 + ξ2
3 − 2(ξ1ξ2 + ξ2ξ3 + ξ3ξ1).

(Masumoto, 1994). It thus follows from Theorems 2 and 5 that Λ is an injection of T into L := {ξ ∈ R3
+ | Q(ξ)+4 5 0}.

In fact, we have the following theorem.

Theorem 6 (Masumoto, 1995). The mapping Λ : T→ L is bijective.

The eigenvalues of the coefficient matrix of Q is −1 and 2. The eigenspaces V−1 and V2 corresponding to the
eigenvalues −1 and 2 are the line ξ1 = ξ2 = ξ3 and the plane ξ1 + ξ2 + ξ3 = 0, respectively. The boundary ∂L of
L in R3

+ is a component of a hyperboloid of two sheets. Note that X is a marked once-punctured torus if and only if
Λ(X) ∈ ∂L.

We use Λ to make T a 3-dimensional real analytic manifold with boundary. As a set, ∂T is the Teichmüller space of
a once-punctured torus and its complement T \ ∂T is the reduced Teichmüller space of a once-holed torus which is not
a once-punctured torus. Each of these Teichmüller spaces carries a real analytic structure, which is compatible with the
real analytic structure on T introduced above (Masumoto, 1995).

2.4 Conformal and Holomorphic Mappings into Marked Tori
Let Y be a marked Riemann surface. Recall that Ta[Y ] (resp. Tc[Y ]) denotes the family of marked once-holed tori X
such that there is a holomorphic (resp. conformal) mapping ofX into Y . Set Si[Y ] = Σ(Ti[Y ]) and Li[Y ] = Λ(Ti[Y ])
for i = a, c. In this section we describe Ti[Y ] for marked tori Y = {R,χ}, where χ = {a, b}.

If τ is the modulus of Y , then Theorem 1 shows that Tc[Y ] consists of marked once-holed tori X whose moduli
disks ∆(X) contain τ . We can also describe Tc[Y ] in terms of extremal lengths. As in the case of marked once-holed
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tori, let λ(Y ), λ̇(Y ) and λ̈(Y ) denote the extremal lengths of the free homotopy classes of a , b and ab−1, respectively.
Set Λ(Y ) =

(
λ(Y ), λ(Ẏ ), λ(Ÿ )

)
. If Y ′ is a marked once-punctured torus obtained from Y by removing one point,

then Λ(Y ) = Λ(Y ′) ∈ ∂L. In general, for ξ ∈ L denote by C(ξ) the set of η ∈ R3 such that Q(η − ξ) 5 0 and
Q(η) 5 Q(ξ). It is a cone with vertex at ξ whose axis of symmetry is parallel to V−1. Note that C(ξ) is a subset of L.
Then the next theorem follows at once from Theorem 5. We will improve it later (see Theorem 11 below).

Theorem 7. If Y is a marked torus, then Lc[Y ] = C
(
Λ(Y )

)
.

Next we examine Ta[Y ]. The following theorem reflects a special character of tori.

Theorem 8. If Y is a marked torus, then Ta[Y ] = T.

This is an immediate consequence of the Behnke-Stein theorem, which assures the existence of holomorphic differ-
entials with prescribed periods on noncompact Riemann surfaces. Shiba studied the existence problem of holomorphic
mappings into tori with prescribed boundary behavior (Shiba, 1978; Shiba, 1980; Shiba, 1981).

3 MARKED ONCE-HOLED TORI
3.1 Ordering Relation
For X,X ′ ∈ T we say that X is smaller than X ′ and write X � X ′ if there is a conformal mapping of X into X ′. In
other words, if X is conformally equivalent to some subdomain of X ′, then X � X ′. If this is the case, we also say that
X ′ is larger than X and use the notation X ′ � X .

The relation � is clearly reflexive and transitive. Since it is also anti-symmetric (Komatu & Mori, 1952), (T,�) is an
ordered set. It is never totally ordered. For Y ∈ T the set Tc[Y ] is thus the set of lower bounds of Y .

The ordering relation � is expressed in terms of moduli disks and extremal lengths. We have namely the following
theorem.

Theorem 9 (Masumoto, 1995). For X,X ′ ∈ T the following statements are equivalent to one another.
(i) X � X ′.

(ii) ∆(X) ⊃ ∆(X ′).
(iii) Q

(
Λ(X)− Λ(X ′)

)
5 0 and Q

(
Λ(X)

)
5 Q

(
Λ(X ′)

)
.

We give an immediate consequence of Theorem 9. It is an improvement of Theorem 2.

Theorem 10. The mapping ∆ is a decreasing isomorphism of the ordered set (T,�) onto the ordered set (D,⊂).

3.2 Conformal and Holomorphic Mappings into Marked Once-holed Tori
We begin with another application of Theorem 9. The following theorem improves Theorem 7. Note that the set of
marked tori is canonically identified with the set of marked once-punctured tori.

Theorem 11. If Y is a marked once-holed torus, then the identity Lc[Y ] = C
(
Λ(Y )

)
holds.

In general, for a once-holed torus T let C(T ) denote the set of free homotopy classes of nondividing loops on T . For
each Γ ∈ C(T ) denote by Le(Γ) (resp. Lh(Γ)) the extremal length of Γ (resp. the length of the hyperbolic geodesic in
Γ).

Now, let T1 and T2 be once-holed tori, and let κ be a homeomorphism of T1 onto T2. We then ask whether there is
a conformal mapping of T1 into T2 homotopic to κ. The mapping κ induces a bijection κ∗ : C(T1) → C(T2). If there
exists a conformal mapping of T1 into T2 homotopic to κ, then we have

Le
(
κ∗(Γ)

)
5 Le(Γ) and Lh

(
κ∗(Γ)

)
5 Lh(Γ)

for all Γ ∈ C(T1). For extremal length the converse is also valid:

Theorem 12 (Masumoto, 1997). If Le
(
κ∗(Γ)

)
5 Le(Γ) holds for all Γ ∈ C(T1), then there is a conformal mapping of

T1 into T2 homotopic to κ.

On the other hand, for hyperbolic length the converse does not hold. In fact, we have the following theorem:

Theorem 13 (Masumoto, 1997; Masumoto, 2012). For any once-holed torus T there is a once-holed torus T ′ together
with a homeomorphism κ of T ′ onto T such that there is a holomorphic mapping of T ′ into T homotopic to κ but there
are no conformal mappings of T ′ into T homotopic to κ.

Therefore, we have no theorem similar to Theorem 12 for hyperbolic length since holomorphic mappings decrease
hyperbolic lengths by the Schwarz-Pick theorem. It follows from Theorem 13 that Tc[Y ] is a proper subset of Ta[Y ] for
any Y ∈ T.

Set A(r) = {z ∈ C | 1 < |z| < r} for r ∈ (1,+∞]. For r1, r2 ∈ (1,+∞], there is a holomorphic mapping of
A(r1) into A(r2) inducing a nontrivial homomorphisms between the fundamental groups of A(rj), j = 1, 2, if and only
if r1 5 r2 (Schiffer, 1943; Huber, 1951; Huber, 1953; Jenkins, 1953; Landau & Osserman, 1959; Landau & Osserman,
1959/60; Marden et al., 1967). This theorem implies that for doubly connected Riemann surfaces R1 and R2 of finite
moduli if there is a homotopically nontrivial holomorphic mapping ofR1 intoR2, then there is a homotopically nontrivial
conformal mapping of R1 into R2. Theorem 13 shows that for once-holed tori the situation is completely different.

Let Y be a marked once-holed torus. Theorem 9 implies that λ(X) = λ(Y ) for any X ∈ Tc[Y ]. For X ∈ Ta[Y ] the
same inequality does not hold any longer. However, λ(X) cannot arbitrarily small as the following theorem shows:
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Theorem 14 (Masumoto, 2009). Let Y be a marked once-holed torus. Then the inequality

λ(X) =
8 log(

√
2 + 1)

π

λ(Y )

5λ(Y )2 + 4

holds for all X ∈ Tc[Y ].

4 MARKED RIEMANN SURFACES
4.1 Handle Conditions
Studies on Ta[Y ] and Tc[Y ] for general marked Riemann surfaces Y are still in its infancy. In our previous work we
examined Tc[Y ] (Masumoto, 2007; Masumoto, 2011). Among other things, we described the set of upper bounds of
Tc[Y ] in terms of extremal length of free homotopy classes of simple loops on Y . Very recently, we have developed a
new method for investigating the sets Ta[Y ] and Tc[Y ]. In this section we summarize some of the results.

Let P(X) be a mathematical statement, where the free variable X ranges over T. Thus P(X) is an expression on
marked once-holed tori X . It is required that the meaning of P(X) is so clear that for each X ∈ T whether P(X) is
true or false is determined without ambiguity. It is called a handle condition if it possesses the following property: For
X1, X2 ∈ T, if X1 � X2 and P(X2) is true, then P(X1) is also true.

For an arbitrary statement P(X) on X ∈ T define a mapping v[P] : T→ {0, 1} by

v[P](X) =

{
1 if P(X) is true,
0 if P(X) is false.

Then P(X) is a handle condition if and only if v[P] is decreasing.

Example 1. Let Y be a fixed marked Riemann surface. The statement Pa(X) that there is a holomorphic mapping of
X into Y is a handle condition. If we restrict ourselves to injective holomorphic mappings, we obtain another handle
condition Pc(X). Thus Pc(X) states that there is a conformal mapping of X into Y .

For a handle condition P(X) we denote by T[P] the set of marked once-holed tori X such that P(X) is true, or
v[P](X) = 1. For the handle conditions Pa(X) and Pc(X) in Example 1 we have T[Pa] = Ta[Y ] and T[Pc] = Tc[Y ].

We give two theorems on the shape of T[P]. The first one describes L[P] := Λ(T[P]). Recall that the eigenspaces of
the coefficient matrix of the quadratic formQ are the line V−1 and the plane V2. Let e = (1/

√
3 , 1/

√
3 , 1/

√
3 ) ∈ V−1.

We define a function e[P] on V2 as follows. For ζ ∈ V2 let e[P](ζ) be the infimum of t ∈ R such that ζ + te ∈ L[P]; if
no such t exists, then we set e[P](ζ) = +∞. Let V2[P] be the set of ζ with e[P](ζ) < +∞, and set

L[P] = {ζ + te | ζ ∈ V2[P], t > e[P](ζ)} and L̄[P] = {ζ + te | ζ ∈ V2[P], t = e[P](ζ)}.

Theorem 15 (Masumoto, 2012). If L[P] 6= ∅, then V2[P] is identical with V2, and e[P] is Lipschitz continuous on V2.
Furthermore, the inclusion relations

L[P] ⊂ L[P] ⊂ L̄[P]

hold.

For the proof we apply Theorem 12. Note that L[P] is a domain and that L̄[P] is its closure. Therefore, T[P] is a
connected set. In general, e[P] is not differentiable.

To give the second theorem we introduce a new global coordinate system on T. Set S = H × [0, 1). For (τ, l) ∈ S

define a marked once-holed torus T (l)
τ by T (l)

τ = Tτ \ πτ ([0, l]). It is a horizontal slit domain of the torus Tτ . Choose
a mark χ(l)

τ =
{
a

(l)
τ , b

(l)
τ

}
of handle of T (l)

τ so that the inclusion mapping T (l)
τ ↪→ Tτ induces a conformal mapping

of X(l)
τ :=

(
T

(l)
τ , χ

(l)
τ

)
into Xτ . Every marked once-holed torus is conformally equivalent to some X(l)

τ (Shiba, 1984;
Shiba & Shibata, 1987). In fact, the correspondence (τ, l) 7→ X

(l)
τ is a bijection of S onto T (Masumoto, 1995). Its

inverse will be denoted by Σ. Thus Σ
(
X

(l)
τ ) = (τ, l). Note that the bottom point of the moduli disk of X(l)

τ is exactly τ .
The composite Λ ◦ Σ−1 is real-analytic on S (Masumoto, 2012).

For t ∈ [0,+∞] denote by H(t) the set of z ∈ H with 0 < Im z < t and by H̄(t) its closure in H. Note that
H(0) = H̄(0) = ∅ while H(+∞) = H̄(+∞) = H. Let Π : S → H, Π(z, l) = z, be the natural projection. For a
handle condition P(X) set S[P] = Σ(T[P]) and H[P] = Π(S[P]). In the proof of the next result Theorem 10 plays a
fundamental role.

Theorem 16 (Masumoto, 2012). For any handle condition P(X) there is a constant λ[P] ∈ [0,+∞] such that

H
(

1

λ[P]

)
⊂ H[P] ⊂ H̄

(
1

λ[P]

)
,

where 1/0 = +∞ and 1/(+∞) = 0.

In other words, for τ ∈ H,
(i) if Im τ > 1/λ[P], then P

(
X

(l)
τ

)
is false for any l, while

(ii) if Im τ < 1/λ[P ], then P
(
X

(l)
τ

)
is true for some l.

We call the number λ[P] the critical extremal length for the handle condition P(X). If λ[P] = +∞, then P(X) is false
for all X ∈ T, and vice versa.
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4.2 Conformal and Holomorphic Mappings into Marked Riemann Surfaces
Let Y be a marked Riemann surface, and let Pa(X) and Pc(X) be the handle conditions in Example 1. Since Ta[Y ] =
T[Pa] and Tc[Y ] = T[Pc], we can apply the results in the preceding section. In this section we give characteristic
properties of the sets. We write Li[Y ] = L[Pi], λi[Y ] = λ[Pi], . . . for i = a, c.

Applying a normal family argument, we can show that Ta[Y ] is closed in T. We thus obtain the following theorem
from Theorem 15:

Theorem 17 (Masumoto, 2012). La[Y ] = L̄a[Y ].

Therefore, Ta[Y ] is a closed domain. Moreover, it is a deformation retract of T. Note that La[Y ] satisfies the interior
and exterior cone conditions.

On the other hand, Ha[Y ] turns out to be open in H. Hence the next theorem follows from Theorem 16. For the proof
we perform surgery on horizontal slit tori.

Theorem 18 (Masumoto, 2012). Ha[Y ] = Ha[Y ].

Since the behavior of extremal lengths under holomorphic mappings is uncontrollable, the existence of the extremal
critical length λa[Y ] is quite remarkable. In contrast, Hc[Y ] is not open if Y is a marked once-holed torus.

Finally, we compare λa[Y ] with λc[Y ]. It follows from Ta[Y ] ⊃ Tc[Y ] 6= ∅ that λa[Y ] 5 λc[Y ] < +∞. In fact we
can establish the following theorem. For the proof we again use the surgery on horizontal slit tori mentioned above.

Theorem 19 (Masumoto, 2012). λa[Y ] < λc[Y ] < +∞.

If Y is not a marked torus, then there is a marked once-holed torus Ỹ such that Ta[Ỹ ] = Ta[Y ]. It thus follows from
Theorem 14 that λa[Y ] is positive. On the other hand, if Y is a marked torus, then λa[Y ] = 0 by Theorem 8.

Let A(r) = {z ∈ C | 1 < |z| < r} for r ∈ (1,+∞]. Fixing r0 ∈ (1,+∞], denote by ρa (resp. ρc) the supremum of
ρ for which there is a homotopically nontrivial holomorphic (resp. conformal) mapping of A(ρ) into A(r0). It is trivial
that r0 5 ρc 5 ρa. Schiffer’s theorem shows that the identities r0 = ρc = ρa actually hold. Note that the extremal
length of the loops in A(r) separating the boundary components is exactly 2π/ log r. Theorem 19 thus makes a sharp
contrast with the consequence of Schiffer’s theorem.
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[3] H. Huber, Über analytische Abbildungen von Ringgebieten in Ringgebiete, Compositio Math., 9 (1951) 161–168.
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