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ABSTRACT: A network can be represented by graph which is isomorphic to its adjacency matrix. Thus the analysis
of networks involving rate of change with respect to time reduces to the study of graph differential equations and its
associated matrix differential equations. In this paper we develop the Peano’s and Picard’s existence theorem for graph
differential equations through its associated matrix differential equations.

1 INTRODUCTION
In any physical phenomena interconnections between the components of the considered system arise naturally.

These interconnections can be well represented by a graph. In social structures these inter connections vary with time and
hence there interconnections are better represented in a graph that changes with time. Hence in [D.D.Siljak, 2008] graph
functions have been introduced.A natural extension would be to consider the rate of change of these graphs with respect
to time. This has been introduced by Siljak in [V.Lakshmikantham et al., 1969]. In [J.Vasundhara Devi et al., 2013]
an attempt had been made to systematically introduce and study the concepts of graphs that lead to a graph differential
equation (GDE) and an existence result was developed through the monotone iterative technique.

In [J.Vasundhara Devi et al., 2013] it has been observed that a simple digraph is not useful in applications and
a concept of pseudo simple graph had been introduced along with other concepts like the product of graphs.

In this paper we first consider a matrix differential equation (MDE) and study an existence result of a Peano
type and consider the extension of solution to the boundary of the given domain. Next we use this result to obtain the
corresponding results to the given graph differential equation.

2 PRELIMINARIES
In this section, we give certain definitions,notations,results and preliminary facts related to GDEs that are required to
study the main results in the problem.

2.1 Definition : Pseudo simple graph
A simple graph having loops is called as a pseudo simple graph.

Analogous to theory of directed simple graphs developed in [J.Vasundhara Devi et al., 2013] we proceed to develop
the results in this set up. We avoid the details for fear of repetition.

Let v1, v2, ...vN be N vertices, where N is any positive integer. Let DN be the set of all weighted directed pseudo
simple graphs D=(V, E). Then (DN ,+, .) is a linear space w.r.t the operations + and . defined in [J.Vasundhara Devi et
al., 2013].

Let the set of all corresponding adjacency matrices be EN . Then (EN ,+, .) is a matrix linear space where ’+’
denotes matrix addition and ’.’ denotes scalar multiplication. With this basic structure defined, the comparison theorems,
existence and uniqueness results of a solution of a MDE and the corresponding GDE follow as in [J.Vasundhara Devi et
al., 2013].

2.2 Definition: Continuous and differentiable matrix
(1) A matrix E(t) = (eij)N×N is said to be continuous if and only if each entry eij(t) is continuous for all i, j =
1, 2, . . . , N.
(2) A continuous matrix E(t) is said to be differentiable if and only if each entry eij(t) is differentiable for all i, j =
1, 2, . . . , N . The derivative of E(t) (if exists) is denoted by E′ and is given by E′(t) = (e′ij)N×N .

2.3 Definition : Continuous and differentiable graph
Let D : I → DN be a graph and E : I → Rn×n be its associated adjacency matrix then
(1) D(t) is said to be continuous if and only if E(t) is continuous.
(2) D(t) is said to be differentiable if and only if E(t) is differentiable.

If for any graph D the corresponding adjacency matrix is differentiable then we say that D is differentiable and the
derivative of D(if exists) is denote by D′.
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Consider the initial value problem
D′ = G(t,D), D(t0) = D0 (1)

Let E, E0 be adjacency matrices corresponding to any graph D and the initial graph D0.

Then the MDE is given by
E′ = F (t, E), E(t0) = E0 (2)

where F(t,E) is the adjacency matrix function corresponding to G(t,D).

2.4 Definition : Solution of a Matrix Differential Equation
Any continuous differentiable matrix function E(t) is said to be a solution of (2), if and only if it satisfies (2).

2.5 Definition: Solution of a Graph Differential Equation
By a solution of GDE (1) we mean the graph function D(t) corresponding to the matrix solution E(t) of the MDE (2).

In order to obtain a unique solution of (1) we use the corresponding adjacency MDE. As there exists an isomorphism
between graphs and matrices, the solution obtained for the MDE will be a solution of the corresponding GDE.

2.6 Definition: Convergence of a sequence of Matrices
Let {En} be a sequence of matrices then En converges to E if and only if given ε > 0 there exist n ≥ N such that
||En − E|| ≤ ε for all n ≥ N, for all i, j . This means enij → eij for all 1 ≤ i, j ≤ N

2.7 Definition:
Consider two matrices A and B of order N. We say that A ≤ B if and only if aij ≤ bij for all i, j = 1, 2, . . . , N .

With the necessary preliminaries in place, we proceed to the next section to develop the main results.

3 Existence Result

In this section we plan to first prove an existence result for the MDE obtained from the given GDE and then using the
solution of the MDE we construct the graph solution for the given GDE.

In order to prove the existence result for MDE we need Ascoli’s theorem extended to matrices, that is for f ∈ Rn×n.
As the proof is parallel to the standard result we only state the Ascoli’s Theorem for matrices below.

3.1 Theorem
Let F = {f |f : [t0, T ]→ Rn×n} be a family of functions which is equicontinuous and uniformly bounded. Then there
exists a subsequence {fk}, k = 1, 2, ... which is uniformly convergent on the interval [t0, T ].

Consider the nonlinear GDE given by (1) where G(t,D) ∈ DN and gij is the weight of the edge from vj to vi of the
graph G(t,D).

LetF (t, E) be the adjacency matrix function corresponding to the graph G(t,D). Clearly F is nonlinear. Now consider
the MDE be given by

E′ = F (t, E)
E(t0) = E0

}
(3)

Where E0 is the initial adjacency matrix corresponding to initial graph D0, F (t, E) ∈ Rn×n and E ∈ Rn×n Let us
introduce the following notation.
R0 ={(t, E): |t− t0| ≤ a and ||E−E0|| ≤ b} be a closed compact set in [t0, T ]×Rn×n where ||E|| = Max|eij | and
E = (eij)n×n.
We shall now state and prove the following theorem parallel to the Peano’s theorem for ordinary differential equation in
Rn.

3.2 Peano’s Theorem
Let F ∈ C[[t0, T ],Rn×n] and ||F (t, E)|| ≤ M on R0. Then the initial value problem of the MDE possesses at least
one solution E(t) on t0 ≤ t ≤ t0 + α, where α = min(a, b

M
)

Proof.

We consider an interval [t0 − δ, t0] for small δ > 0 and choose a continuous differentiable function E0(t) defined on
[t0 − δ, t0] such that
E0(t0) = E0, ||E0(t)− E0|| ≤ b and ||E′0(t)|| ≤M
Next, take ε1 such that 0 < ε1 < δ and define the function Eε1(t) as follows
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Eε1(t) =

{
E0, t ∈ [t0 − δ, t0]

E0 +
∫ t
t0
F (s, Eε1(s− ε1))ds, t ∈ [t0, t0 + α1]

(4)

where α1 = min(α, ε1). Clearly Eε1(t) is a differentiable function,
and

||Eε1(t)− E0|| ≤ b, ||E′ε1(t)|| ≤M, [t0 − δ, t0 + α1]
}

(5)

Now if α1 = α, we are through. If α1 < α then using (4) we extend the function to the interval [t0 − δ, t0 + α2] as
follows

Eε1(t) =

{
E0, t ∈ [t0 − δ, t0]

E0 +
∫ t
t0
F (s, Eε1(s− ε1))ds, t ∈ [t0, t0 + α2]

(6)

where α2 = min(α, 2ε1) such that (5) holds on the interval [t0 − δ, t0 + α2]. Proceeding in this fashion, we can
define Eε1(t) over the interval [t0 − δ, t0 + α] such that Eε1(t) is continuously differentiable and satisfies the relation
(5) on the interval [t0 − δ, t0 + α]. It can be easily verified that ||E′ε1(t)|| ≤M on [t0 − δ, t0 + α]. Using ε we obtain a
family of functions Eε(t) of matrix functions,where Eε(t) defined as in (4) and satisfies (5).

Now the family of functions {Eε(t)} is equicontinuous and uniformly bounded. Thus applying Ascoli’s Theorem for
a family of matrix functions. We can conclude that there exists a sequence of functions {Eεn(t)}, n = 1, 2, 3, ... which
is uniformly convergent. Note {εn} → 0 as n→∞

Let the sequence Eεn(t) be converge uniformly to E(t) on [t0 − δ, t0 + α].
Since F is a uniformly continuous function on R, we obtain that
F (t, Eεn(t− εn)) converges uniformly to F (t, E(t)) as n→∞. Hence term-by-term integration of (4) with ε = εn,

α1 = α yields
E(t) = E0 +

∫ t
t0
F (s, E(s))ds

This proves that E(t) is a solution of (3) and the proof is complete.

3.3 Corollary
Let R be an open (t, E) ⊂ [[t0, t0 + a] × Rn×n] and R0 be a compact subset of R. Suppose that F ∈ C[R,Rn×n] and
||F (t, E)|| < M in R then there exists and α = α(E,E0,M) such that (t0, F0) ∈ R0 the MDE (2) has a solution, and
every solution exists on [t0, t0 + α].

3.4 Theorem
Let G in the IVP for GDE (1) be continuous and bounded. Then the IVP for GDE (1) possesses at least one solution.

Proof.

Let D be any graph and E be its corresponding adjacency matrix. Construct the adjacency matrix E0 corresponding
the given initial graph D0. Let F (t, E) be the adjacency matrix corresponding G in (1). Since G is continuous it implies
that F is also continuous and F is also bounded. Thus from the Theorem 3.2, there exists least one solution E(t) for the
MDE.
E′ = F (t, E), E(t0) = E0. Now the corresponding graph function D(t) is a solution for the GDE (1).
We now state and prove following lemma which is necessary to prove a theorem dealing with extending the solutions

of a MDE to the domain.

3.5 Lemma
Let F ∈ C[R,Rn×n] where R is an open (t, E) set in R×Rn×n. Let E(t) be solution of (2) on any interval t0 ≤ t < a
, a <∞. Assume that there exist a sequence {tk} such that t0 ≤ tk →∞ as k →∞

limk→∞E(tk) = E0 (7)

(7) exists if F (t, E) is a bounded on the intersection of R and neighborhood of (a,E0) then limk→∞E(tk) = E0. If,
in addition F (t, E) is continuous at (a,E0), then E(t) is continuously differentiable on [t0, a] and is a solution of (2) on
[t0, a].

Proof.

As we are interested in the behavior of the solution E(t) of (2) at the boundary point t = a. Let us consider the region
R as follows choose ε > 0 sufficiently small and set
R̄ = {(t, E) : 0 < a− t < ε, ||E − E0|| ≤ ε}
Since F is bounded onR∩ R̄ there existM(ε) sufficiently large such that ||F (t, E)|| < M(ε) for (t, E) ∈ R∩ R̄ next

using the hypothesis, we get that for sufficiently large k, given ε > 0 there exists η > 0 such that ||E(tk) − E0|| < ε
2

and 0 < a− tk < η choose η = ε
2M(ε)
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For tk ≤ t < a, consider ||E(t) − E0|| ≤ ||E(t) − E(tk)|| + ||E(tk) − E0|| for a sufficiently large k, we get by
considering

||E(t)− E(tk)|| ≤ ||
∫ t

tk

F (s, E(s))ds||

≤M(ε)(t− tk)
< M(ε)(a− tk)

<
ε

2
(8)

Now suppose (8) does not hold then there exists a t1 such that tk < t1 < a such that ||E(t1)−E(tk)|| = M(ε)(a−
tk) ≤ ε

2

From this relation we can still conclude that for tk ≤ t < t1
||E(t)− E0|| ≤ ε

2
+ ||E(tk)− E0|| < ε

which further yields that for tk ≤ t < t1, ||F ′(t)|| ≤M(ε)
Hence ||E(t1)−E(tk)|| ≤M(ε)(t1 − tk) < M(ε)(a− tk). Thus (8) holds, which implies that (7) holds now since

F is continuous and E(t)→ E0 as t→ a Thus E(t) is a solution of (2) as [t0, a] and hence thus the proof is complete.

3.6 Theorem
Let R be an open set in R× Rn×n and let
F ∈ C[R,Rn×n] and E(t) be a solution of (2) on some interval t0 ≤ t ≤ a0. Then E(t) can be extended as a

solution to the boundary of R.

Proof.

Let R1, R2, ..., Rn be open subsets of R such that R̄1, R̄2, R̄3, ..., R̄n are compact and R̄n ⊂ Rn+1

Suppose (t0, E0) ∈ R̄n for some n, since F is continuous and from Corollary 3.3, we have that there exists an εn > 0
such that all solutions of the IVP (2) exist on [t0, t0 + εn]. Now consider the solution E(t) of IVP(2) existing on
t0 ≤ t ≤ a0 and take (a0, E(a0)). Choose n1 so large that (a0, E(a0)) ∈ R̄n. Then by Corollary 3.3, E(t) can be
extended over the interval (a0, a0 + εn). if (a0 + εn1 , E(a0 + εn1)) ∈ R̄n1 , then E(t) can be further extended over the
interval [a0 + εn1 , a0 + 2εn1 ] repeating this argument finite number of times. We can extend the solution E(t) over the
interval t0 ≤ t ≤ a1, where a1 = a0 +N1εn1 where N1 an integer ≥ 1 such that (a1, E(a1)) /∈ R̄n2

Next, we choose n2 so large that (a1, E(a1)) ∈ R̄n2 proceeding as before, we can find an integer N2 ≥ 1 such that
E(t) can be extended on the interval [t0, a2] where a2 = a1 +N2εn2 and(a2, E(a2)) /∈ R̄n2

Working as earlier , we obtain a sequence of integers n1 < n2 < ... and numbers a0 < a1 < a2 < ... such that
E(t) can be extended over the interval [t0, a] where limk→∞ ak = a and that (ak, E(ak)) /∈ R̄nk . We now consider the
sequence of points (ak, E(ak)) this sequence is either unbounded or has a limit point on the boundary of R. From Lemma
3.5, we have that no limit point of (tk, E(tk)) is an interior point of R as tk → a, hence E(t) tends to the boundary of R
as t→ a.

Thus the proof is complete.

Remark : Using the above Theorem 3.6, we can easily show that any solution G(t) of the GDE (1) exists on
t0 ≤ t ≤ a, a <∞ can be extended to the boundary of the considered domain provided G is continuous.
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