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ABSTRACT: In this paper the authors prove a local asymptotic attractivity and stability result for a hybrid nonlinear
fractional integral equations under the mixed weaker partially Lipschitz and compactness type conditions. It is shown that
the comparable solutions of the considered hybrid nonlinear fractional integral equation are uniformly locally ultimately
attractive and asymptotically stable on unbounded intervals of the real line. We base our theory on a recent measure
theoretic fixed point theorem of Dhage (2014) in partially ordered spaces and claim that our result is new to the literature.

1 INTRODUCTION
In this paper we present the qualitative analysis of the following nonlinear quadratic fractional integral equation (in short
QFIE),

x(t) = q(t) +
[
f(t, x(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(s)) ds

)
(1.1)

for all t ∈ R+ = [0,∞), where q : R+ → R, k : R+ × R+ → R and f, g : R+ × R → R are continuous, Γ is
the Euler’s gamma function and 1 ≤ α < 2.

By a solution of the QFIE (1.1) we mean a function x ∈ C(R+,R) that satisfies the equation (1.1), where C(R+,R)
is the space of continuous real-valued functions on R+.

The QFIE (1.1) is general and includes several nonlinear quadratic integral studied earlier as special cases. For exam-
ple, if α = 1, and J = [0, T ] ⊂ R+, then it reduces to the quadratic integral

x(t) = q(t) +
[
f(t, x(t))

](∫ t

0

k(t, s) g(s, x(s)) ds

)
, t ∈ J, (1.2)

which is discussed in Zhu et.al. [15] for monotonicity of the solutions on the bounded interval J of R. The QFIE (1.2)
again includes a few others integral equations as special cases. See Zhu et.al [15] and the references therein. In this paper,
we discuss some local existence results for the above QFIE (1.1) and show that solutions are locally attractive in the long
period of time t. Our analysis rely on a measure theoretic fixed point theorem of Dhage (2013) in partially ordered
Banach space and it is shown that the sequence of successive approximations constructed in a certain way converges to
the solution of QFIE (1.1) under certain mixed Lipschitz and compactness type conditions on the nonlinearities involved
in it. The measure of noncompactness used in this paper allows us not only to obtain the existence of solutions of the
mentioned functional integral equation but also to characterize the solutions in terms of uniform local ultimate attractivity.
This assertion means that all possible comparable solutions of the nonlinear fractional integral equation in question are
locally uniformly attractive in the sense of notion defined in the following section.

2 AUXILIARY RESULTS
Let (E,�, ‖ · ‖) be a partially ordered normed linear space. We frequently need the concept of regularity of E in what
follows. It is known thatE is regular if {xn} is a nondecreasing (resp. nonincreasing) sequence inE such that xn → x∗

as n → ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N. The conditions guarantying the regularity of the partially
ordered normed linear space E may be found in Carl and Heikkilä [4] and the references therein. Again, two elements
x and y in E are said to be comparable if either the relation x � or y � x holds. A non-empty subset C of E is called
a chain or totally ordered if all the elements of C are comparable. The following definitions have been introduced in
Dhage [5] and are frequently used in the subsequent part of this paper.

A subset S ofE is called partially bounded if every chainC in S is bounded. Again S is called a uniformly partially
bounded if all chains in S are bounded with a unique constant.

Note that every bounded subset of a partially ordered normed linear space is uniformly partially bounded and uniformly
partially bounded set in E is partially bounded, but the converse implications may hold.

Definition 2.1. A mapping T : E → E is called isotonic or monotonic if it is either a monotone nondecreasing or
monotone non-increasing, that is, if x � y implies T x � T y or T x � T y for all x, y ∈ E.
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Definition 2.2 (Dhage [6]). A mapping T : E → E is called partially continuous at a point a ∈ E if for ε > 0 there
exists a δ > 0 such that ‖T x − T a‖ < ε whenever x is comparable to a and ‖x − a‖ < δ. T is called partially
continuous on E if it is partially continuous at every point of it. It is clear that if T is a partially continuous on E, then it
is continuous on every chain C contained in E. T is called partially bounded if T (C) is a bounded subset of E for all
totally ordered sets or chains C in E.

If C is a chain in E, then C′ denotes the set of all limit points of C in E. The symbol C stands for the closure of C
in E defined by C = C ∪ C′. Thu set C is called a closed chain in E. Thus, C is the intersection of all closed chains
containing C. Clearly, inf C, supC ∈ C provided inf C and supC exist. The supC is an element z ∈ E such that for
every ε > 0 there exists a c ∈ C such that d(c, z) < ε and x ≤ z for all x ∈ C. Similarly, inf C is defined in the same
way.

In what follows, we denote byPcl(E),Pbd(E),Prcp(E),Pch(E),Pbd,ch(E),Prcp,ch(E) the family of all nonempty
and closed, bounded, relatively compact, chains, bounded chains and relatively compact chains of E respectively. Now
we introduce the concept of partially measure of noncompactness in E on the lines of usual classical theory.

We accept the following definition of partially measure of noncompactness given in Dhage [6].

Definition 2.3. A mapping µp : Pbd,ch(E)→ R+ = [0,∞) is said to be a partially measure of noncompactness in E
if it satisfies the following conditions:

1o ∅ 6= (µp)−1({0}) ⊂ Prcp,ch(E),
2o µp(C) = µp(C)

3o µp is nondecreasing, i.e., if C1 ⊂ C2 ⇒ µp(C1) ≤ µp(C2)

4o If {Cn} is a sequence of closed chains fromPbd,ch(E) such thatCn+1 ⊂ Cn (n = 1, 2, ...) and if lim
n→∞

µp(Cn) = 0,

then the intersection set C∞ =
⋂∞
n=1 Cn is nonempty.

The partially measure µp of noncompactness is called sublinear if it satisfies

5o µp(C1 + C2) ≤ µp(C1) + µp(C2) for all C1, C2 ∈ Pbd,ch(E) and

6o µp(λC) = |λ|µp(C) for λ ∈ R.

Remark 2.1. The family of sets described in 1o is said to be kernel of the measure of noncompactness µp and is defined
as

ker µp =
{
C ∈ Pbd,ch(E)

∣∣µp(C) = 0
}
.

Clearly, ker µp ⊂ Prcp,ch(E). Observe that the intersection setC∞ from condition 4o is a member of the family ker µp.
In fact, since µp(C∞) ≤ µp(Cn) for any n, we infer that µp(C∞) = 0. This yields that C∞ ∈ ker µp. This simple
observation will be essential in our further investigations.

Definition 2.4. A mapping T : E → E is called a partially k-set-contraction if there exists a constant k > 0 such that
for any bounded chain C of E, T (C) is a bounded chain and µp(T (C)) ≤ k µp(C).

We need the following definition in what follows.

Definition 2.5 (Dhage [6]). The order relation � and the metric d on a non-empty set E are said to be compatible if
{xn} is a monotone, that is, monotone a nondecreasing or monotone nonincreasing sequence in X and if a subsequence
{xnk} of {xn} converges to x∗ implies that the original sequence {xn} converges to x∗. Similarly, given a partially
ordered normed linear space (X,�, ‖ · ‖), the order relation� and the norm ‖ · ‖ are said to be compatible if� and the
metric d defined through the norm ‖ · ‖ are compatible. A subset S of E is called Janhavi if the order relation and the
metric or norm are compatible in it.

The following applicable hybrid fixed point theorem for monotone mappings proved in Dhage [7] is the key tool for
proving the main existence results of this paper.

Theorem 2.1 (Dhage [7]). Let S be a non-empty, closed and partially bounded subset of a regular partially ordered
complete normed linear space (E,�, ‖ · ‖) such that the order relation � and the norm ‖ · ‖ are compatible in every
compact chain C of E. Let T : S → S be a partially continuous, nondecreasing and partially k-set-contraction with
k < 1. If there exists an element x0 ∈ S such that x0 � T x0 or x0 � Tx0, then T has a fixed point x∗ and the sequence
{T nx0} of successive iterations converges to x∗.

Proof. The proof is given in Dhage [7] and so we omit the details. �

Remark 2.2. The regularity of E and the partial continuity of T in above Theorem 2.1 may be replaced with a stronger
condition of the continuity of the operator T on E.

Remark 2.3. If the set S of solutions to the above operator equation is a chain, then all the solutions belonging to
S are comparable. Further, if µp(S) > 0, then µp(S) = µp(T S) ≤ ψ(µp(S)) < µp(S) which is a contradiction.
Consequently, S ∈ ker µp. This simple fact has been utilized in the study of qualitative properties of the dynamic
systems under consideration. See Dhage [7, 8], Dhage and Dhage [9] and Dhage et.al. [10].
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Remark 2.4. Suppose that the order relation� is introduced inE with the help of an order coneK which is a non-empty
closed set K in E satisfying (i) K+K ⊆ K, (ii) λK ⊆ K and (iii) {−K} ∩ K = {0} (cf. [12]). Then the order relation
� in E is defined as x � y ⇐⇒ y− x ∈ K. The element x0 ∈ E satisfying x0 � T x0 in above Theorem 2.1 is called
a lower solution of the operator equation x = T x. If the operator equation x = T x has more than one lower solution
and the set of all these lower solutions are comparable, then the corresponding set S of the solutions to above operator
equation is a chain and hence all solutions in S are comparable. To see this, let x0 and y0 be any two lower solutions of
the above operator equation such that x0 � y0 and let x∗ and y∗ respectively be the corresponding solutions under the
conditions of Theorem 2.1. Now, by definition of �, one has y0 − x0 ∈ K and from the monotone nondecreasing nature
of T it follows that T ny0 − T nx0 ∈ K. Since K is closed, we have that y∗ − x∗ ∈ K or x∗ � y∗.

For our purpose we introduce a handy tool for the partial measure of noncompactness in the space BC(R+,R) which
is useful in the study of the solutions of certain nonlinear integral equations. To define this partial measure of noncom-
pactness, let us fix a nonempty and bounded chain X in the partially ordered Banach space BC(R+,R) and a positive
real number T . For a fixed element x ∈ X and a real number ε ≥ 0 denote by ωT (x, ε) the modulus of continuity of the
function x on the interval [0, T ] defined by

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε} .

Next, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X} ,

ωT0 (X) = lim
ε→0

ωT (X, ε)

and

ω0(X) = lim
T→∞

ωT0 (X) . (2.1)

The partial Hausdorff measure of noncompactness βp in the function space C([0, T ],R) of continuous real-valued
functions defined on closed and bounded interval [0, T ], is very much useful in the applications to nonlinear differential
and integral equations and it can be shown that

βp(X) =
1

2
ωT0 (X)

for all bounded chain X in C([0, T ],R). Similarly, ω0 is a handy tool of partial measure of noncompactness in the
ordered Banach space BC(R+,R) useful for practical applications to nonlinear differential and integral equations.

Now, for a fixed number t ∈ R+ and a fixed bounded chain X in BC(R+,R), let us denote

X(t) = {x(t) : x ∈ X}.

Let

δa(X(t)) = |X(t)| = sup{|x(t)| : x ∈ X} ,

δTa (X(t)) = sup
t≥T

δa(X(t)) = sup
t≥T
|X(t)|

and

δa(X) = lim
T→∞

δTa (X(t)) = lim sup
t→∞

|X(t)|. (2.2)

The details of the function δa appear in Dhage [6]. Finally, let us consider the function µpa defined on the family of
bounded chains in BC(R+,R) by the formula

µpa(X) = ω0(X) + δa(X). (2.3)

It can be shown that the function µpa is a partial measure of noncompactness in the spaceBC(R+,R). The components
ω0 and δa are called the characteristic values of the partial measure of noncompactness µpa in BC(R+,R).

Remark 2.5. The kernel ker µpa of the partial measure of noncompactness µpa consists of all nonempty and bounded
chainsX of the Banach spaceBC(R+,R) such that functions fromX are locally equicontinuous on R+ and the thickness
of the bundle formed by functions fromX tends to zero at infinity. This particular characteristic of ker µpa has been useful
in establishing the local attractivity and local asymptotic stability of the comparable solutions for the fractional integral
equations on R.
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3 ATTRACTIVITY AND STABILITY RESULTS
Our considerations will be placed in the Banach space BC(R+,R) consisting of the all real functions x = x(t) which
are defined, continuous and bounded on R+. This space is equipped with the standard supremum norm

||x|| = sup{|x(t)| : t ∈ R+} . (3.1)

Define the order relation ≤ in BC(R+,R) as follows. Let x, y ∈ BC(R+,R). Then

x ≤ y ⇐⇒ x(t) ≤ y(t) (3.2)

for all t ∈ R+. It is clear that (BC(R+,R),≤, ‖ · ‖) is a regular partially ordered Banach space which is also a lattice
(cf. Nieto and Lopez [14]).

The following lemma follows immediately by an application of Arzellá-Ascoli theorem.

Lemma 3.1. Let
(
BC(R+,R),≤, ‖ · ‖

)
be a partially ordered Banach space with the norm ‖ · ‖ and the order relation

≤ defined by (3.1) and (3.2) respectively. Then the norm ‖ · ‖ and the order relation ≤ are compatible in every partially
compact subset of BC(R+,R).

Proof. The proof of the lemma appears in Dhage [7]. Since it is not well-known, we give the details of it. Let S be a
partially compact subset of BC(R+,R) and let {xn} be a monotone nondecreasing sequence of points in S. Then we
have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · , (∗)

for each t ∈ R+.

Suppose that a subsequence {xnk} of {xn} is convergent and converges to a point x in S. Then the subsequence
{xnk (t)} of the monotone real sequence {xn(t)} is convergent. By monotone characterization, the original sequence
{xn(t)} is convergent and converges to a point x(t) in R for each t ∈ R+. This shows that the sequence {xn} converges
point-wise to x in S. To show the convergence is uniform, it is enough to show that the sequence {xn(t)} is equicon-
tinuous. Since S is partially compact, every chain or totally ordered set and consequently {xn} is an equicontinuous
sequence by Arzelá-Ascoli theorem. Hence {xn} is convergent and converges uniformly to x. As a result ‖ · ‖ and≤ are
compatible in S. This completes the proof. �

In order to introduce further concepts used in the paper let us assume that Ω is a nonempty chain of the space
BC(R+,R). Moreover, let Q be an operator defined on Ω with values in BC(R+,R).

Consider the operator equation of the form

x(t) = Qx(t), t ∈ R+ . (3.3)

Definition 3.1. We say that comparable solutions of the equation (3.3) are locally asymptotically stable or locally
asymptotically attractive to the line x(t) = c for all t ∈ R+ if there exists an open ballB(x0, r) in the spaceBC(R+,R)
such that for arbitrary comparable solution x = x(t) of the equation (3.3) belonging to B(x0, r) ∩ Ω we have that

lim
t→∞

[x(t)− c] = 0 . (3.4)

In the case when limit (3.4) is uniform with respect to the set B(x0, r)∩Ω, i.e. when for each ε > 0 there exists T > 0
such that

|x(t)− c| ≤ ε (3.5)

for all x ∈ B(x0, r)∩Ω being the comparable solutions of (3.3) and for t ≥ T , we will say that the comparable solutions
of the operator equation (3.3) are uniformly locally asymptotically attractive or uniformly locally asymptotically
stable to the line x(t) = c defined on R+.

The equation (1.1) will be considered under the following assumptions:

(H1) The function q : R+ → R is continuous and bounded. Moreover, lim
t→∞

q(t) = 0.

(H2) The function k is continuous and nonnegative on R+ × R+.

(H3) f and g define the functions f, g : J × R→ R+. Moreover, f(t, 0) = 0 for all t ∈ R+.

(H4) There exists a constant L > 0 such that

0 ≤ f(t, x)− f(t, y) ≤ L(x− y)

for all t ∈ R+ and x, y ∈ R with x ≥ y.

(H5) g(t, x) is nondecreasing in x for each t ∈ J .
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(H6) There exists an element u ∈ C(J,R) such that

u(t) ≤ q(t) +
[
f(t, u(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, u(s))) ds

)
for all t ∈ J .

(H7) There exists a continuous function b : R+ → R+ such that g(t, x) ≤ b(t) for t ∈ R+ and x ∈ R. Moreover, we
assume that

lim
t→∞

t∫
0

k(t, s)

(t− s)1−α b(s) ds = 0 .

Remark 3.1. If we define the function v : R+ → R+ by

v(t) =

∫ t

0

k(t, s)

(t− s)1−α b(s) ds, (3.6)

then it is continuous on R+ and which further in view of hypothesis (H7) implies that the number V = supt≥0 v(t) exists.

The hypotheses (H1) through (H7) are standard and have been widely used in the literature on nonlinear differential
and integral equations. The hypothesis (H3) is considered recently in Nieto and Lopez [14]. Now we formulate the main
existence results for the integral equation (1.1) under above mentioned natural conditions.

Theorem 3.1. Assume that the hypotheses (H1) through (H7) hold. Furthermore if LV
Γ(α)

< 1, then the fractional QFIE
(1.1) has at least one solution x∗ in the space BC(R+,R) and the sequence {xn} of successive approximations defined
by

xn+1(t) = q(t) +
[
f(t, xn(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, xn(s)) ds

)
, t ∈ R+, (3.7)

for each n ∈ N with x0 = u converges monotonically to x∗. Moreover, the comparable solutions of the QFIE (1.1) are
uniformly locally asymptotically attractive and stable to zero on R+.

Proof. We seek the solutions of the HFIE (1.1) in the function space BC(R+,R) of continuous and bounded real-valued
functions defined on R+. Set E = BC(R+,R). Then, in view of Lemma 3.1, every compact chain in E possesses the
compatibility property with respect to the norm ‖ · ‖ and the order relation ≤ in E.

Define the operator Q defined on the space E by the formula

Qx(t) = q(t) +
[
f(t, x(t))]

 1

Γ(α)

t∫
0

k(t, s)

(t− s)1−α g(s, x(s)) ds

 (3.8)

for all t ∈ R+. Observe that in view of our assumptions, for any function x ∈ E, the function Qx is continuous on R+.
As a result, Q defines a mapping Q : E → E. We show that Q satisfies all the conditions of Theorem 2.1 on E. This
will be achieved in a series of following steps:

Step I: Q is a nondecreasing on E.

Let x, y ∈ E be such that x ≤ y. Then by hypothesis (H3)-(H4), we obtain

Qx(t) = q(t) +
[
f(t, x(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(s)) ds

)
≤ q(t) +

[
f(t, y(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(s)) ds

)
= Qy(t)

for all t ∈ R+. This shows that Q is a nondecreasing operator on E.

Step II: Q maps a closed and partially bounded set into itself.

Define an open ball B(x0, r), where r =
‖x0‖+ ‖q‖
1− LV

Γ(α)

. Let X be a chain in B(x0, r) and let x ∈ X be arbitrary. If

x ≥ θ, then for arbitrarily fixed t ∈ R+ we obtain:

|x0(t)−Qx(t)| ≤ |x0(t)|+ ‖q‖+
[
|f(t, x(t))|

]
×

×
(

1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α |g(s, x(s))| ds
)

≤ |x0(t)|+ ‖q‖+
[
|f(t, x(t))− f(t, 0)|

]
×
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×
(

1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α b(s) ds

)
≤ |x0(t)|+ ‖q‖+ L |x(t)| v(t)

Γ(α)

≤ ‖x0‖+ ‖q‖+ L ‖x‖ V

Γ(α)

≤ ‖x0‖+ ‖q‖+
LV r

Γ(α)

= r. (3.9)

Similarly, if x ≤ θ, then it can be shown that |x0(t) − Qx(t)| ≤ r for all t ∈ R+. Taking the supremum over t, we
obtain ‖x0 −Qx‖ ≤ r for all x ∈ X . This means that the operator Q transforms any bounded chain X into a bounded
chainQX inE. More precisely, we infer that the operatorQ transforms the chainX belonging to B(x0, r) into the chain
Q(X) contained in the ball B(x0, r). As a result, Q defines a mapping Q : Pch(B(x0, r)))→ Pch(B(x0, r))) and that
Q is partially bounded on S = B(x0, r) into itself.

Step III: Q is a partially continuous on S.

Now we show that the operator Q is a partially continuous on the ball B(x0, r). To do this, let us fix an arbitrary ε > 0
and take x, y ∈ X ⊂ B(x0, r) such that x ≥ y and ||x− y|| ≤ ε. Then we get:

∣∣Qx(t)−Qy(t)
∣∣ ≤ ∣∣∣∣[f(t, x(t))]

( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(s)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(s)) ds
)∣∣∣∣

≤
∣∣∣∣[f(t, x(t))]

( 1

Γ(α)

∫ t

0

(t− s)α−1 g(s, x(s)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(s)) ds
)∣∣∣∣

+

∣∣∣∣[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(s)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(s)) ds
)∣∣∣∣

≤ 1

Γ(α)

∣∣f(t, x(t))− f(t, y(t))
∣∣ ∫ t

0

k(t, s)

(t− s)1−α b(s) ds

+
2

Γ(α)
|f(t, y(t))|

∫ t

0

k(t, s)

(t− s)1−α b(s) ds

≤ LV

Γ(α)
|x(t)− y(t)|+ 2Lr

Γ(α)
v(t).

Hence, by virtue of hypothesis (B6), we infer that there exists T > 0 such that v(t) ≤ ε
2Lr
Γ(α)

for t ≥ T . Thus, for

t ≥ T we derive that

|Qx(t)−Qy(t)| <
(
LV

Γ(α)
+ 1

)
ε . (3.10)

Further, let us assume that t ∈ [0, T ]. Then, evaluating as above with the Similar arguments, we get:

∣∣Qx(t)−Qy(t)
∣∣ ≤ ∣∣∣∣[f(t, x(t))]

( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(s)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(s)) ds
)∣∣∣∣

≤
∣∣∣∣[f(t, x(t))]

( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(s)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(s)) ds
)∣∣∣∣

+

∣∣∣∣[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(s)) ds
)
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−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(s)) ds
)∣∣∣∣

≤ 1

Γ(α)

∣∣f(t, x(t))− f(t, y(t))
∣∣ ∫ t

0

k(t, s)

(t− s)1−α b(s) ds

+
1

Γ(α)
|f(t, y(t))|

∫ t

0

k(t, s)

(t− s)1−α |g(s, x(s))− g(s, y(s))| ds

≤ LV

Γ(α)
|x(t)− y(t)|+ 1

Γ(α)
|f(t, y(t))|

∫ t

0

k(t, s)

(t− s)1−α ωTr (g, ε) ds

< ε+
CMT p

Γ(α+ 1)
ωTr (g, ε) , (3.11)

where we have denoted
C = sup{k(t, s) : t, s ∈ [0, T ]},

M = sup
{
f(t, y) : t ∈ [0, T ] and y ∈ [−r, r]

}
,

and
ωTr (g, ε) = sup{|g(s, x)− g(s, y)| : t, s ∈ [0, T ], x, y ∈ [−r, r], |x− y| ≤ ε} .

Now, from the uniform continuity of the function g(s, x) on the set [0, T ] × [−r, r] we derive that ωTr (g, ε) → 0
as ε → 0. Now, linking (3.10), (3.11) and the above established facts we conclude that the operator Q maps partially
continuously the ball B(x0, r) into itself.

Step IV: Q is a k-set-contraction w.r.t. the characteristic value ω0.

Further on let us take a chain X belonging to the ball B(x0, r). Next, fix an arbitrary T > 0 and ε > 0. Let us choose
x ∈ X and t1, t2 ∈ [0, T ] with |t2 − t1| ≤ ε. Without loss of generality we may assume that x(t1) ≥ x(t2). Then,
taking into account our assumptions, we get:∣∣Qx(t1)−Qy(t2)

∣∣ ≤ |q(t1)− q(t2)|

+

∣∣∣∣[f(t1, x(t1))]
( 1

Γ(α)

∫ t1

0

k(t1, s)

(t1 − s)1−α g(s, x(s)) ds
)

−[f(t2, y(t2))]
( 1

Γ(α)

∫ t2

0

k(t2, s)

(t2 − s)1−α g(s, y(s)) ds
)∣∣∣∣

≤ |q(t1)− q(t2)|

+

∣∣∣∣[f(t1, x(t1))]
( 1

Γ(α)

∫ t1

0

k(t1, s)

(t1 − s)1−α g(s, x(s)) ds
)

−[f(t2, y(t2))]
( 1

Γ(α)

∫ t1

0

k(t2, s)

(t2 − s)1−α g(s, y(s)) ds
)∣∣∣∣

+

∣∣∣∣[f(t2, y(t2))]
( 1

Γ(α)

∫ t1

0

k(t1, s)

(t1 − s)1−α g(s, x(s)) ds
)

−[f(t2, y(t2))]
( 1

Γ(α)

∫ t2

0

k(t2, s)

(t2 − s)1−α g(s, y(s)) ds
)∣∣∣∣

≤ |q(t1)− q(t2)|

+
1

Γ(α)

∣∣f(t1, x(t1))− f(t2, x(t2))
∣∣( ∫ t1

0

k(t1, s)

(t1 − s)1−α b(s) ds
)

+
1

Γ(α)
|f(t2, y(t2))|

∣∣∣∣∫ t1

0

k(t1, s)

(t1 − s)1−α |g(s, x(s))| ds

−
∫ t2

0

k(t2, s)

(t2 − s)1−α | g(s, x(s)) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ t1

t2

k(t2, s)

(t2 − s)1−α g(s, x(s)) ds

∣∣∣∣
≤ |q(t1)− q(t2)|

+
∣∣f(t1, x(t1))− f(t2, x(t2))

∣∣v(t1)

+
M

Γ(α)

∣∣∣∣∫ t1

0

k(t1, s)

(t1 − s)1−α g(s, x(s)) ds−
∫ t2

0

k(t2, s)

(t2 − s)1−α g(s, x(s)) ds

∣∣∣∣
≤ |q(t1)− q(t2)|

+
1

Γ(α)

∣∣f(t1, x(t1))− f(t2, x(t2))
∣∣v(t1)
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+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+

∣∣∣∣ 1

Γ(α)

∫ t1

t2

k(t2, s)

(t2 − s)1−α g(s, x(s)) ds

∣∣∣∣
≤ |q(t1)− q(t2)|

+
V

Γ(α)

∣∣f(t1, x(t1))− f(t2, x(t2))
∣∣

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+

GTr
Γ(α)

|t1 − t2|, (3.12)

where
GTr = sup{|g̃(t, s, x)| : t ∈ [0, T ], s ∈ [0, T ], x ∈ [−r, r]}

which does exists in view of the fact that the function

g̃(t, s, x) =
k(t, s)

(t− s)1−α g(s, x)

is continuous on compact [0, T ]× [0, T ]× [−r, r]. Now combining the inequalities (3.11) and (3.12) we obtain,

|Qx(t2)−Qx(t1)| ≤ |q(t1)− q(t2)|

+
V

Γ(α)

∣∣f(t1, x(t1))− f(t2, x(t1))
∣∣

+
LV

Γ(α)
|x(t1)− x(t2)|

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+

GTr
Γ(α)

|t1 − t2|

≤ ωT (q, ε) +
LV

Γ(α)
ωT (x, ε) +

LV

Γ(α)
ωTr (f, ε)

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+

GTr
Γ(α)

|t1 − t2|, (3.13)

where we have denoted

ωT (q, ε) = sup{|q(t2)− q(t1)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε} ,

ωT (x, ε) = sup{|x(t2)− x(t1)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε}
and

ωTr (f, ε) = sup{|f(t2, x)− f(t1, x)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε, x ∈ [−r, r]} .

From the above estimate we derive the following one:

ωT (Q(X), ε) ≤ ωT (q, ε) +
LV

Γ(α)
ωT (X, ε) +

LV

Γ(α)
ωTr (f, ε)

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+

GTr
Γ(α)

ε. (3.14)

Observe that ωTr (f, ε) → 0 and
∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ → 0 as ε → 0, which is a simple consequence of

the uniform continuity of the functions f and
k(t, s)

(t− s)1−α on the sets [0, T ]× [−r, r] and [0, T ]× [0, βT ] respectively.

Moreover, from the uniform continuity of q on [0, T ], it follows that ωT (q, ε)→ 0 as ε→ 0. Thus, linking the established
facts with the estimate (3.14) we get

ωT0 (Q(X)) ≤ LV

Γ(α)
ωT0 (X) .
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Consequently, we obtain

ω0(Q(X)) ≤ LV

Γ(α)
ω0(X) . (3.15)

Step V: Q is a k-set-contraction w.r.t. characteristic value δc.

Next, we show that Q is k-set-contraction with respect to the characteristic value δa. Now, taking into account our
assumptions, for arbitrarily fixed t ∈ R+ and for x ∈ X with x ≥ 0, we deduce the following estimate:

|(Qx)(t)| ≤ |q(t)|+ |f(t, x(t))− f(t, 0)|
(

1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α b(s) ds

)
≤ |q(t)|+ L |x(t)| v(t)

Γ(α)

≤ |q(t)|+ LV

Γ(α)
|x(t)|.

From the above inequality it follows that

|QX(t)| ≤ |q(t)|+ LV

Γ(α)
|X(t)|

for each t ∈ R+. Therefore, taking limit superior over t→∞, we obtain

δa(QX) = lim sup
t→∞

|Q(X(t))|

≤ LV

Γ(α)
lim sup
t→∞

|X(t)|

=
LV

Γ(α)
δa(X). (3.16)

Step VI: Q is a partially k-set-contraction on S.

Further, using the measure of noncompactness µpa defined by the formula (2.3) and keeping in mind the estimates
(3.15) and (3.16), we obtain

µpc(QX) = ω0(QX) + δa(QX)

≤ LV

Γ(α)
ω0(X) +

LV

Γ(α)
δa(X)

=
LV

Γ(α)
µpa(X).

This shows thatQ is a partially nonlinear k-set-contraction on S with k = LV
Γ(α)

< 1. Again, by hypothesis (H5), there
exists an element x0 = u ∈ S such that x0 ≤ Qx0, that is, x0 is a lower solution of the QFIE (1.1) defined on R+.

Thus Q satisfies all the conditions of Theorem 2.1 on S. Hence we apply it to the operator equation Qx = x and
deduce that the operator Q has a fixed point x∗ in the ball B(x0, r). This further implies that x∗ is a solution of the
fractional integral equation (1.1) and the sequence {xn} of successive approximations defined by

xn+1(t) = q(t) +
[
f(t, xn(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, xn(s)) ds

)
for each t ∈ R+ converges monotonically to x∗. Moreover, taking into account that the image of every chain X under
the operator Q is again a chain Q(X) contained in the ball B(x0, r) we infer that the set F(Q) of all fixed points of Q
is contained in B(x0, r). If the set F(Q) contains all comparable solutions of the equation (1.1), then we conclude from
Remark 2.3 that the set F(Q) belongs to the family ker µpa. Now, taking into account the description of sets belonging to
ker µpa (given in Section 2) we deduce that all comparable solutions of the equation (1.1) are uniformly locally ultimately
attractive on R+. This completes the proof. �

Remark 3.2. The conclusion of Theorem 3.1 also remains true if we replace the hypothesis (H5) with the following one:

(H′5) There exists an element u ∈ C(R+,R) such that

u(t) ≥ q(t) +
[
f(t, u(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, u(s)) ds

)
for all t ∈ R+.

The proof under this new hypothesis is similar to Theorem 3.1 and the conclusion again follows by an application of
Theorem 2.1.
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Below we indicate an example for the realization of the abstract theory we have developed in the previous part of the
paper.

Example 3.1. Consider the nonlinear quadratic fractional integral equation,

x(t) =
1 + t

1 + t2
+
[
f(t, x(t))

]( 1

Γ(3/2)

∫ t

0

(t− s)1/2

t2 + 1
g(s, x(s)) ds

)
(3.17)

for all t ∈ R+, where f, g : R+ × R→ R are functions defined by

f(t, x) =



0, if x ≤ 0,

sinx

20
, if 0 < x ≤ π

2
,

(π + 2)x

20π(1 + x)
, if x >

π

2
,

and

g(t, x) =


1, if x ≤ 0,

x2 + 1, if 0 < x ≤ 1,

4x

1 + x
, if x > 1.

We shall show that all the of Theorem 3.1 are satisfies by the functions involved in QFIE (3.17). Here, q(t) =
1 + t

1 + t2
so that q is continuous and bounded on R+ with bound equal to unity. Again, lim

t→∞
q(t) = 0. Thus, hypothesis (H1) of

Theorem 3.1 is satisfied. Again, here the kernel function k(t, s) is given by k(t, s) = 1
t2+1

. Obviously k is continuous
and nonnegative on R+ × R+ and so (H2) holds. Next, f and g define the continuous functions f, g : R+ × R → R+

and f(t, x) and g(t, x) are nondecreasing in x for each t ∈ R+. Moreover, f(t, 0) = 0. So the hypotheses (H3) and (H5)
are satisfied.

Now, we show that f is partially Lipschitz on R+ × R. Let x, y ∈ (−∞, 0] with x ≥ y. Then,

0 ≤ f(t, x)− f(t, y) ≤ L(x− y)

for all real numbers L > 0. If x, y ∈ [0, π
2

] and x ≥ y, then

0 ≤ f(t, x)− f(t, y) ≤ 1

20
(x− y).

Again, if x, y ∈ R+ with x ≥ y, then

0 ≤ f(t, x)− f(t, y) ≤ π + 2

20π
(x− y).

Since
π + 2

20π
>

1

20
, one has

0 ≤ f(t, x)− f(t, y) ≤ π + 2

20π
(x− y).

for all x, y ∈ R and so, hypothesis (H4) is held.

Furthermore, α = 3
2

and g(t, x)| ≤ 4 for all t ∈ R+ and R. Therefore,

v(t) =

∫ t

0

(t− s)
1
2

t2 + 1
· 4 ds =

8

3
· t

3
2

t2 + 1
.

Therefore,

lim
t→∞

v(t) = lim
t→∞

8

3

t
3
2

t2 + 1
= 0.

As a result the hypothesis (H7) is held. Furthermore,

LV

Γ(α)
=

(
π + 2

20π

)
4

3Γ(3/2)
< 1.

Finally, it is easy to prove thawt u ≡ 0 is a lower solution of the QFIE (3.16) on R+ and hence the hypothesis (H6) is
held. Thus all the conditions of Theorem 3.1 are satisfied and by a direct application, we conclude that the QFIE (3.17)
has a solution x∗ and the sequence {xn} of successive approximations defined by

xn+1(t) =
1 + t

1 + t2
+
[
f(t, xn(t))

]( 1

Γ(3/2)

∫ t

0

(t− s)1/2

t2 + 1
g(s, xn(s)) ds

)
, t ∈ J, (3.18)

converges monotonically to x∗, where x0 = 0. Moreover, the comparable solutions of the QFIE (3.17) are uniformly
asymptotically attractive and stable to 0 defined on R+.
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4 CONCLUSION
In this paper we have been able to weaken the Lipschitz condition to partially Lipschitz condition which otherwise is
considered to be a very strong condition in the existence theory of nonlinear differential and integral equations. However,
in such situations we need an additional assumption of the monotonicity on the nonlinearities involved in the considered
fractional integral equation in order to guarantee the required characterization of the asymptotic attractivity or asymptotic
stability of the comparable solutions. The advantage of the present approach over the previous ones lies in the fact that
we have been able to develop an algorithm for the solutions of the considered integral equations which otherwise is
not possible via classical approach of measure of noncompactness discussed in Banas and Goebel [2]. Finally, while
concluding this paper we mention that the results presented here are of local nature, however analogous study can also
be made for global asymptotic attractivity and stability using the similar arguments with appropriate modifications and
some of the results in this direction will be elsewhere.
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[4] S. Carl, S. Hekkilä, Fixed Point Theory in Ordered Sets and Applications, Springer, 2011.

[5] B.C. Dhage, Attractivity and positivity results for nonlinear functional integral equations via measures of noncom-
pactness, Differ. Equ. Appl. 2 (2010), 299-318.

[6] B.C. Dhage, Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional
integral equations, Differ. Equ. Appl. 5 (2013), 155-184.

[7] B.C. Dhage, Nonlinear D-set-contraction mappings in partially ordered normed linear spaces and applications to
functional integral equations, Malaya J. Matematik 3(1) (2015), 62-85.

[8] B.C. Dhage, Partially condensing mappings in ordered normed linear spaces and applications to functional integral
equations, Tamkang Jour. Math. 45 (2014), 397-426.

[9] B.C. Dhage, S.B. Dhage, Global attractivity and stability results for comparable solutions of nonlinear fractional
integral equations, Nonlinear Studies 21 (2014), 255-268.

[10] B.C. Dhage, S.B. Dhage, D.V. Mule, Local attractivity and stability results for hybrid functional nonlinear frac-
tional integral equations, Nonlinear Funct. Anal. & Appl. 19, (2014), pp. 415-433.

[11] B.C. Dhage, S.B. Dhage and S.K. Ntouyas, Approximating solutions of nonlinear hybrid differential equations,
Appl. Math. Lett. 34 (2014), 76-80.
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