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ABSTRACT: In this paper, the authors prove some algorithms for the existence as well as approximations of the solutions
for initial as well as periodic boundary value problems of nonlinear first order ordinary differential equations under
generalized monotonicity conditions. We rely our main results on a recent hybrid fixed point theorem of Dhage (2014)
in partially ordered normed linear spaces and are obtained under weaker partial continuity and partial compactness type
conditions. Our results are also illustrated by some numerical examples.

1 INTRODUCTION
The study of nonlinear differential equations via successive approximations has been a topic of great interest since long
time. It is Picard who first devised a constructive method for the initial value problems of nonlinear first order ordinary
differential equations in terms of a sequence of successive approximations converging to a unique solution of the related
differential equations. The method is commonly known as Picard’s iteration method in nonlinear analysis and frequently
used for nonlinear equations in the literature. It employs the Lipschitz condition of the nonlinearities together with a
certain restriction on Lipschitz constant. The Picard’s method is further abstracted to metric spaces by Banach which
thereby made it possible to relax the condition on Lipschitz constant. Many attempts have been made in the literature
to weaken the Lipschitz condition for the existence of unique solution of nonlinear equations. Nieto and Lopez [11]
weakened Lipschitz condition to partial Lipschitz condition guaranteeing the conclusion of the Picard’s method under
certain additional conditions. But in any circumstances the hypothesis of Lipschitz condition is unavoidable to guarantee
the conclusion of Picard’s method for nonlinear problems. Very recently, the present author in [3] proved an abstract
hybrid fixed point theorem in the setting of a partially ordered metric space without using any kind of geometric condition
and still the conclusion of Picard’s method holds. However, in this case the order relation and the metric are required to
satisfy certain compatibility condition. This method is commonly known as Dhage iteration method in the literature and
applied to several nonlinear differential integral equations. In this paper, we use this iteration method based on a hybrid
fixed point theorem in the study of initial and boundary value problems of nonlinear first order ordinary differential
equations under generalized monotonic conditions and derive a stronger conclusion than that of Picard method.

The rest of the paper will be organized as follows. In Section 2 we give some preliminaries and a key fixed point
theorem that will be used in subsequent part of the paper. In Section 3 we discuss the existence result for initial value
problems and in Section 4 we discuss the existence result for periodic boundary value problems of first order ordinary
differential equations.

2 AUXILIARY RESULTS
Unless otherwise mentioned, throughout this paper that follows, let E denote a partially ordered real normed linear space
with an order relation � and the norm ‖ · ‖ in which the addition and the scalar multiplication by positive real numbers
is preserved by � . A few details of such spaces appear in Dhage [2] and the references therein.

Two elements x and y in E are said to be comparable if either the relation x � or y � x holds. A non-empty subset
C ofE is called a chain or totally ordered if all the elements of C are comparable. It is known thatE is regular if {xn}
is a nondecreasing (resp. nonincreasing) sequence in E such that xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗)
for all n ∈ N. The conditions guaranteeing the regularity of E may be found in Heikkilä and Lakshmikantham [10],
Nieto and Lopez [11] and the references therein.

We need the following definitions in the sequel.

Definition 2.1. A mapping T : E → E is called isotone or monotone nondecreasing if it preserves the order relation
�, that is, if x � y implies T x � T y for all x, y ∈ E. Similarly, T is called monotone nonincreasing if x � y implies
T x � T y for all x, y ∈ E. Finally, T is called monotonic or simply monotone if it is either monotone nondecreasing
or monotone nonincreasing on E.
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The following terminologies may be found in any book on nonlinear analysis and applications. See Granas and
Dugundji [9] Heikkila and Lakshmikantham [10] and the references therein.

An operator T on a normed linear spaceE into itself is called compact if T (E) is a relatively compact subset ofE. T
is called totally bounded if for any bounded subset S of E, T (S) is a relatively compact subset of E. If T is continuous
and totally bounded, then it is called completely continuous on E.

Definition 2.2 (Dhage [3]). A mapping T : E → E is called partially continuous at a point a ∈ E if for ε > 0 there
exists a δ > 0 such that ‖T x−T a‖ < ε whenever x is comparable to a and ‖x−a‖ < δ. T called partially continuous
on E if it is partially continuous at every point of it. It is clear that if T is partially continuous on E, then it is continuous
on every chain C contained in E.

Definition 2.3 (Dhage [2, 3]). An operator T on a partially normed linear space E into itself T is called partially
bounded if T (C) is bounded for every chain C in E. T is called uniformly partially bounded if all chains T (C) in
E are bounded by a unique constant. T is called partially compact if T (C) is a relatively compact subset of E for all
totally ordered sets or chainsC inE. T is called uniformly partially compact if T is a uniformly partially bounded and
partially compact operator on E. T is called partially partially totally bounded if for any totally ordered and bounded
subset C of E, T (C) is a relatively compact subset of E. If T is partially continuous and partially totally bounded, then
it is called partially completely continuous on E.

Remark 2.4. Note that every compact mapping on a partially normed linear space is partially compact and every partially
compact mapping is partially totally bounded, however the reverse implications do not hold. Again, every completely
continuous mapping is partially completely continuous and every partially completely continuous mapping is partially
continuous and partially totally bounded, but the converse may not be true.

Definition 2.5 (Dhage [2]). The order relation � and the metric d on a non-empty set E are said to be compatible if
{xn} is a monotone, that is, monotone nondecreasing or monotone nonincreasing sequence in E and if a subsequence
{xnk} of {xn} converges to x∗ implies that the original sequence {xn} converges to x∗. Similarly, given a partially
ordered normed linear space (E,�, ‖ · ‖), the order relation� and the norm ‖ · ‖ are said to be compatible if� and the
metric d defined through the norm ‖ · ‖ are compatible. A subset S of E is called Janhavi if the order relation and the
metric or norm are compatible in it.

Clearly, the set R of real numbers with usual order relation ≤ and the norm defined by the absolute value function | · |
has this property. Similarly, the finite dimensional Euclidean space Rn with usual componentwise order relation and the
standard norm possesses the compatibility property. In general every finite dimensional Banach space with a standard
norm and an order relation is a Janhavi Banach space.

The following fixed point result is a slight improvement of the applicable hybrid fixed point theorem proved in Dhage
[2] in a partially ordered metric space.

Theorem 2.6 (Dhage [3]). Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete normed linear space such that the

order relation � and the norm ‖ · ‖ in E are compatible in every compact chain C of E. Let T : E → E be a partially
continuous, nondecreasing and partially compact operator. If there exists an element x0 ∈ E such that x0 � T x0 or
x0 � T x0, then the operator equation T x = x has a solution x∗ inE and the sequence {T nx0} of successive iterations
converges monotonically to x∗.

Remark 2.7. The regularity of E in above Theorem 2.6 may be replaced with a stronger continuity condition of the
operator T on E which is a result proved in Dhage [2].

3 INITIAL VALUE PROBLEMS
Given a closed and bounded interval J = [0, T ] of the real line R for some T > 0, consider the initial value problem (in
short IVP) of first order ordinary nonlinear hybrid differential equation,

x′(t) = f(t, x(t)),

x(0) = x0 ∈ R,

 (1)

for all t ∈ J, where f : J × R→ R is a continuous function.

By a solution of the IVP (1) we mean a function x ∈ C1(J,R) that satisfies equation (1), where C1(J,R) is the space
of continuously differentiable real-valued functions defined on J .

The IVP (1) is well-known in the literature and discussed at length for existence as well as other aspects of the solutions.
In the present paper and it is proved that the existence of the solutions may be proved under weaker partially continuity
and partially compactness type conditions.

The equivalent integral formulation of the IVP (1) is considered in the function space C(J,R) of continuous real-
valued functions defined on J . We define a norm ‖ · ‖ and the order relation ≤ in C(J,R) by

‖x‖ = sup
t∈J
|x(t)| (2)
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and
x ≤ y ⇐⇒ x(t) ≤ y(t) (3)

for all t ∈ J . Clearly, C(J,R) is a partially ordered Banach space with respect to above supremum norm and also
partially ordered w.r.t. the above partially order relation ≤. It is known that the partially ordered Banach space C(J,R)
is regular and has some nice properties w.r.t. the above order relation ≤ in it. The following lemma follows by an
application of Arzellá-Ascolli theorem.

Lemma 3.1. Let
(
C(J,R),≤, ‖ · ‖

)
be a partially ordered Banach space with the norm ‖ · ‖ and the order relation ≤

defined by (2) and (3) respectively. Then ‖ · ‖ and ≤ are compatible in every partially compact subset of C(J,R).

Proof. The proof of the lemma appears in Dhage [5]. Since it is not well-known, we give the details of it. Let S be a
partially compact subset of C(J,R) and let {xn} be a monotone nondecreasing sequence of points in S. Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · (ND)

for each t ∈ J .

Suppose that a subsequence {xnk} of {xn} is convergent and converges to a point x in S. Then the subsequence
{xnk (t)} of the monotone real sequence {xn(t)} is convergent. By monotone characterization, the original sequence
{xn(t)} is convergent and converges to a point x(t) in R for each t ∈ J . This shows that the sequence {xn} converges
point-wise to a point x ∈ S. To show the convergence is uniform, it is enough to show that the sequence {xn(t)} is
equicontinuous. Since S is partially compact, every chain or totally ordered set and consequently {xn} is an equicontin-
uous sequence by Arzelá-Ascoli theorem. Hence {xn} is convergent and converges uniformly to x. As a result ‖ · ‖ and
≤ are compatible in S. This completes the proof.

We need the following definition in what follows.

Definition 3.2. A function u ∈ C1(J,R) is said to be a lower solution of the IVP (1) if it satisfies

u′(t) ≤ f(t, u(t)),

u(0) ≤ x0,

}
(∗∗)

for all t ∈ J. Similarly, an upper solution v ∈ C1(J,R) to the IVP (1) is defined on J .

We consider the following set of assumptions in what follows:

(H1) There exists a real number λ > 0 such that the map x 7→ f(t, x) + λx is monotone nondecreasing for each t ∈ J .

(H2) The IVP (1) has a lower solution u ∈ C1(J,R).

Consider the IVP
x′(t) + λx(t) = f̃(t, x(t)), t ∈ J,

x(0) = x0 ∈ R,

}
(4)

where f̃ : J × R→ R is defined by
f̃(t, x) = f(t, x) + λx. (5)

Remark 3.3. A function u ∈ C1(J,R) is a lower solution of the IVP (1) if and only if it is a solution of the IVP (4)
defined on J . A Similar assertion is also true for an upper solution. A function u ∈ C(J,R) is a solution of the IVP (1)
if and only if it is a lower as well as an upper solution of the same defined on J .

Consider the following assumption in what follows.

(H3) There exists a constant K > 0 such that |f̃(t, x)| ≤ K for all t ∈ J and x ∈ R.

Lemma 3.4. Assume that hypothesis (H3) holds. Then a function u ∈ C(J,R) is a solution of the IVP (1) if and only if
it is a solution of the nonlinear integral equation,

x(t) = x0e
−λt + e−λt

∫ t

0

eλsf̃(s, x(s)) ds (6)

for all t ∈ J .

Theorem 3.5. Assume that hypotheses (H1) through (H3) hold. Then the IVP (1) has a solution x∗ defined on J and the
sequence {xn}∞n=1 of successive approximations defined by

xn+1(t) = x0e
−λt + e−λt

∫ t

0

eλsf̃(s, xn(s)) ds, t ∈ J, (7)

where x1(t) = u(t) t ∈ J , converges monotonically to x∗.
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Proof. SetE = C(J,R). Then, in view of Lemma 3.1, every compact chainC inE possesses the compatibility property
with respect to the norm ‖ · ‖ and the order relation ≤ in E.

Define the operator T on E by

T x(t) = x0e
−λt + e−λt

∫ t

0

eλsf̃(s, x(s)) ds, t ∈ J. (8)

From the continuity of the integrals, it follows that T defines the maps T : E → E. Now by Lemma 3.4, the IVP (1)
is equivalent to the operator equation

T x(t) = x(t), t ∈ J. (9)

We shall show that the operator T satisfies all the conditions of Theorem 2.6. This is achieved in the series of following
steps.

Step I: T is a nondecreasing operator on E.

Let x, y ∈ E be such that x ≥ y. Then by hypothesis (H1), we obtain

T x(t) = x0e
−λt + e−λt

∫ t

t0

eλsf̃(s, x(s)) ds

≥ x0e
−λt + e−λt

∫ t

t0

eλsf̃(s, y(s)) ds

= T y(t),

for all t ∈ J . This shows that T is a nondecreasing operator on E into E.

Step II: T is a partially continuous operator on E.

Let {xn} be a sequence in a chain C in E such that xn → x for all n ∈ N. Then, by dominated convergence theorem,
we have

lim
n→∞

T xn(t) = lim
n→∞

[
x0e
−λt + e−λt

∫ t

0

eλsf̃(s, xn(s)) ds

]
= x0e

−λt + e−λt
∫ t

0

eλs
[

lim
n→∞

f̃(s, xn(s))
]
ds

= x0e
−λt + e−λt

∫ t

0

eλsf̃(s, x(s)) ds

= T x(t),

for all t ∈ J . This shows that T xn converges to T x pointwise on J .

Next, we will show that {T xn} is an equicontinuous sequence of functions in E. Let t1, t2 ∈ J be arbitrary with
t1 < t2. Then

|T xn(t2)− T xn(t1)| =

∣∣∣∣e−λt2 ∫ t2

0

eλsf̃(s, xn(s))ds− e−λt1
∫ t1

0

eλsf̃(s, xn(s))ds

∣∣∣∣
≤

∣∣∣∣(e−λt2 − e−λt1)∫ t1

0

eλsf̃(s, xn(s))ds

∣∣∣∣
+

∣∣∣∣e−λt2 ∫ t2

t1

eλsf̃(s, xn(s))ds

∣∣∣∣
≤

∣∣∣∣(e−λt2 − e−λt1)∫ T

0

eλsK ds

∣∣∣∣
+

∣∣∣∣∫ t2

t1

eλsK ds

∣∣∣∣
→ 0 as t1 → t2

uniformly for all n ∈ N. This shows that the convergence T xn → T x is uniformly and hence T is a partially continuous
operator on E into itself.

Step III: T is a partially compact operator on E.

Let C be an arbitrary chain in E. We show that T (C) is a uniformly bounded and equicontinuous set in E. First we
show that T (C) is uniformly bounded. Let x ∈ C be arbitrary. Then,

|T x(t)| ≤
∣∣∣x0e−λt∣∣∣+ ∣∣∣∣e−λt ∫ t

0

eλsf̃(s, x(s)) ds

∣∣∣∣
≤ |x0|+

∫ t

0

eλs|f̃(s, x(s))| ds
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≤ |x0|+
∫ T

0

eλTK ds

≤ |x0|+ eλTKT = r,

for all t ∈ J . Taking supremum over t, we obtain ‖T x‖ ≤ r for all x ∈ C. Hence T is a uniformly bounded subset of
E. Next, we will show that T (C) is an equicontinuous set in E. Let t1, t2 ∈ J be arbitrary with t1 < t2. Then

|T x(t2)− T x(t1)| =

∣∣∣∣e−λt2 ∫ t2

0

eλsf̃(s, x(s)) ds− e−λt1
∫ t1

0

eλsf̃(s, x(s))ds

∣∣∣∣
≤

∣∣∣∣(e−λt2 − e−λt1)∫ t1

0

eλsf̃(s, x(s))ds

∣∣∣∣+ ∣∣∣∣e−λt2 ∫ t2

t1

eλsf̃(s, x(s))ds

∣∣∣∣
≤

∣∣∣∣(e−λt2 − e−λt1)∫ T

0

eλsK ds

∣∣∣∣
+

∣∣∣∣∫ t2

t1

eλsK ds

∣∣∣∣
→ 0 as t1 → t2

uniformly for all x ∈ C. Hence T (C) is compact subset of E and consequently T is a partially compact operator on E
into itself.

Step IV: u satisfies the operator inequality u ≤ T u.

By hypothesis (H2), the IVP (1) has a lower solution u. Then we have

u′(t) ≤ f(t, u(t))),

u(0) ≤ x0,

}
(10)

for all t ∈ J. Adding λu(t) on both sides of the first inequality in (10), we obtain

u′(t) + λu(t) ≤ f(t, u(t)) + λu(t), t ∈ J. (11)

Again, multiplying the above inequality (11) by eλt,(
eλtu(t)

)′
≤ eλtf̃(t, u(t)). (12)

A direct integration of (12) from 0 to t yields

u(t) ≤ x0e−λt + e−λt
∫ t

0

eλsf̃(s, u(s)) ds, (13)

for all t ∈ J . From definition of the operator T it follows that

u(t) ≤ T u(t),

for all t ∈ J . Hence u ≤ T u.

Thus T satisfies all the conditions of Theorem 2.6 and we apply it to conclude that the operator equation T x = x has
a solution. Consequently the integral equation and the IVP (1) has a solution x∗ defined on J . Furthermore, the sequence
{xn} of successive approximations defined by (1) converges monotonically to x∗. This completes the proof.

Remark 3.6. The conclusion of Theorem 3.5 also remains true if we replace the hypothesis (H2) with the following one:

(H′2) The IVP (1) has an upper solution v ∈ C1(J,R).
Example 3.7. Given a closed and bounded interval J = [0, 1], consider the IVP,

x′(t) = tan−1 x(t)− x(t),

x(0) = 1,

 (14)

for all t ∈ J.
Here, f(t, x) = tan−1 x− x. Clearly, the functions f is continuous on J ×R. The function f satisfies the hypothesis

(H1) with λ = 1. Moreover, the function f̃(t, x) = tan−1 x is bounded on J × R with bound K =
π

2
and so the

hypothesis (H3) is satisfied.

Since −2 < tan−1 x < 2 for all x ∈ R, any function u ∈ C1(J,R) satisfying the linear differential equation

x′(t) + x(t) = −2,

x(0) = 1,

}
(15)
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is a lower solution of the IVP (14) on J . Because, in this case, we obtain

u′(t) + u(t) ≤ tan−1 u(t),

u(0) = 1,

}
(16)

for all t ∈ J . Therefore, solving (15) for unknown function u, we get

u(t) = 3e−t − 2, t ∈ J. (17)

Similarly, any function v ∈ C1(J,R) satisfying the linear differential equation

x′(t) + x(t) = −2,

x(0) = 1,

}
(18)

is an upper solution of the IVP (14) on J . Solving the differential equation (18) for the unknown function v yields that

v(t) = 2− e−t, t ∈ J. (19)

Hence, we apply Theorem 3.5 and conclude that the IVP (14) has a solution x∗ defined on J and the sequence {xn}∞n=1

of successive approximations defined by

xn+1(t) = e−t + e−t
∫ t

0

es tan−1 xn(s) ds (20)

for all t ∈ J , where x1(t) = 3e−t − 2, t ∈ J , converges monotonically to x∗.

Remark 3.8. In view of Remark 3.6, the existence of solutions x∗ of the IVP (14) may be obtained under the assumption
of existence of the upper solution v defined on J . Here also we conclude that the IVP (14) has a solution x∗ defined on
J and the sequence {xn} of successive approximations defined by (20) with x1 = 2− e−t, converges monotonically to
x∗.

4 PERIODIC BOUNDARY VALUE PROBLEMS
Given a closed and bounded interval J = [0, T ] of the real line R for some T > 0, consider the periodic boundary value
problem (in short PBVP) of first order ordinary nonlinear hybrid differential equation

x′(t) = f(t, x(t)),

x(0) = x(T ),

 (21)

for all t ∈ J, where f : J × R→ R is a continuous function.

By a solution of the PBVP (21) we mean a function x ∈ C1(J,R) that satisfies the equation (21), where C1(J,R) is
the space of continuously differentiable real-valued functions defined on J .

The PBVP (21) is well-known in the literature and discussed at length for existence as well as other aspects of the
solutions. In the present paper and it is proved that the existence as well as algorithm of the solutions may be proved for
periodic boundary value problems of nonlinear first order ordinary differential equations under weaker partial continuity
and partial compactness type conditions.

We need the following definition in what follows.

Definition 4.1. A function u ∈ C1(J,R) is said to be a lower solution of the of PBVP (21) if it satisfies

u′(t) ≤ f(t, u(t)),

u(0) ≤ u(T ),

}
(∗∗)

for all t ∈ J. Similarly, an upper solution v ∈ C1(J,R) to the PBVP (21) is defined on J .

(H4) The PBVP (21) has a lower solution u ∈ C1(J,R).

Let λ ∈ R be such that λ > 0 and consider the PBVP

x′(t) + λx(t) = f̃(t, x(t)),

x(0) = x(T ),

 (22)

for all t ∈ J, where f̃ : J × R→ R and
f̃(t, x) = f(t, x) + λx. (23)

Remark 4.2. A function u ∈ C1(J,R) is a lower solution of the PBVVP (21) if and only if it is a solution of the PBVP
(22) defined on J . A Similar assertion is also true for an upper solution. A function u ∈ C1(J,R) is a solution of the
PBVVP (21) if and only if it is a lower as well as an upper solution of the same defined on J .
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The following useful lemma is obvious and may be found in Nieto and Lopez [12].

Lemma 4.3. For any h ∈ L1(J,R+) and σ ∈ L1(J,R), x is a solution to the differential equation

x′(t) + h(t)x(t) = σ(t), t ∈ J,
x(0) = x(T ),

}
(24)

if and only if it is a solution of the integral equation

x(t) =

∫ T

0

Gh(t, s)σ(s) ds (25)

where,

Gh(t, s) =


eH(s)−H(t)+H(T )

eH(T ) − 1
, 0 ≤ s ≤ t ≤ T,

eH(s)−H(t)

eH(T ) − 1
, 0 ≤ t < s ≤ T,

(26)

and H(t) =

∫ t

0

h(s) ds.

Notice that the Green’s function Gh is continuous and nonnegative on J × J and therefore, the number

Mh := max { |Gh(t, s)| : t, s ∈ [0, T ] }

exists for all h ∈ L1(J,R+). In particular, if h = 1, then for the sake of convenience we write G1(t, s) = G(t, s) and
M1 =M .

An application of above Lemma 4.3 we obtain

Lemma 4.4. Suppose that hypothesis (H2) holds. Then a function u ∈ C(J,R) is a solution of the PBVP (21) if and
only if it is a solution of the nonlinear integral equation,

x(t) =

∫ T

0

G(t, s)f̃(s, x(s)) ds (27)

for all t ∈ J , where

G(t, s) =


eλs−λt+λT

eλT − 1
, 0 ≤ s ≤ t ≤ T,

eλs−λt

eλT − 1
, 0 ≤ t < s ≤ T.

(28)

Theorem 4.5. Assume that hypotheses (H1) and (H3)-(H4) hold. Then the PBVP (21) has a solution x∗ defined on J
and the sequence {xn} of successive approximations defined by

xn+1(t) =

∫ T

0

G(t, s)f̃(s, xn(s)) ds (29)

for all t ∈ J , where x0 = u converges monotonically to x∗.

Proof. Set E = C(J,R). Then, in view of Lemma 3.1, the norm ‖ · ‖ and the order relation ≤ are compatible in every
compact chain C of E.

Define the operator T on E by

T x(t) =
∫ T

0

G(t, s)f̃(s, x(s)) ds, t ∈ J. (30)

From the continuity of the integrals, it follows that T defines the map T : E → E. Now by Lemma 4.4, the PBVP
(21) is equivalent to the operator equation

T x(t) = x(t), t ∈ J. (31)

We shall show that the operator T satisfies all the conditions of Theorem 2.6. This is achieved in the series of following
steps.

Step I: T is a monotone nondecreasing operator on E.

Let x, y ∈ E be such that x ≥ y. Then by hypothesis (A1), we obtain

T x(t) =

∫ T

0

G(t, s)f̃(s, x(s)) ds

≥
∫ T

0

G(t, s)f̃(s, y(s)) ds

= T y(t),
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for all t ∈ J . This shows that T is a nondecreasing operator on E into E.

Step II: T is a partially continuous operator on E.

Let {xn} be a sequence in a chain C of E such that xn → x for all n ∈ N. Then, by dominated convergence theorem,
we have

lim
n→∞

T xn(t) = lim
n→∞

∫ T

0

G(t, s)f̃(s, xn(s)) ds

=

∫ T

0

G(t, s)
[

lim
n→∞

f̃(s, xn(s))
]
ds

=

∫ T

0

G(t, s)f̃(s, x(s)) ds

= T x(t),

for all t ∈ J . This shows that T xn converges to T x pointwise on J .

Next, we will show that {T xn} is an equicontinuous sequence of functions in E. Let t1, t2 ∈ J be arbitrary elements.
Then,

|T xn(t2)− T xn(t1)| =

∣∣∣∣∫ T

0

G(t1, s)f̃(s, xn(s)) ds−
∫ T

0

G(t2, s)g(s, xn(s)) ds

∣∣∣∣
=

∣∣∣∣∫ T

0

|G(t1, s)−G(t2, s)||f̃(s, xn(s))| ds
∣∣∣∣

≤ K

∫ T

0

|G(t1, s)−G(t2, s)| ds

→ 0 as t2 − t1 → 0

uniformly for all n ∈ N. This shows that the convergence T xn → T x is uniformly and hence T is a partially continuous
operator on E.

Step III: T is a partially compact operator on E.

Let C be an arbitrary chain in E. We show that T (C) is a uniformly bounded and equicontinuous set in E. First we
show that T (C) is uniformly bounded. Let x ∈ C be arbitrary. Then,

|T x(t)| =

∣∣∣∣∫ T

0

G(t, s)f̃(s, x(s)) ds

∣∣∣∣
≤

∫ T

0

G(t, s)|f̃(s, x(s))| ds

≤
∫ T

0

MK ds

≤ MKT = r,

for all t ∈ J . Taking supremum over t, we obtain ‖T x‖ ≤ r for all x ∈ C. Hence T (C) is a uniformly bounded subset
of E. Next, we will show that T (C) is an equicontinuous set in E. Let t1, t2 ∈ J with t1 < t2. Then

|T x(t2)− T x(t1)| =

∣∣∣∣∫ T

0

[G(t1, s)−G(t2, s)]f̃(s, x(s)) ds

∣∣∣∣
=

∫ T

0

|G(t1, s)−G(t2, s)||f̃(s, x(s))| ds

≤
∫ T

0

|G(t1, s)−G(t2, s)|K ds

→ 0 as t1 → t2

uniformly for all x ∈ C. Hence T (C) is a compact subset of E and consequently T is a partially compact operator on
E into itself.

Step IV: u satisfies the operator inequality u ≤ T u.

By hypothesis (H4), the PBVP (21) has a lower solution u. Then we have

u′(t) ≤ f(t, u(t)),

u(0) ≤ u(T ),

}
(32)
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for all t ∈ J. Adding λu(t) on both sides of the first inequality in (11), we obtain

u′(t) + λu(t) ≤ f(t, u(t)) + λu(t), t ∈ J.

Again, multiplying the above inequality by eλt,(
eλtu(t)

)′
≤ eλtf̃(t, u(t)).

A direct integration of above inequality from 0 to t yields

eλtu(t) ≤ u(0) +
∫ t

0

eλsf̃(s, u(s)) ds, (33)

for all t ∈ J . Therefore, in particular,

eλTu(T ) ≤ u(0) +
∫ T

0

eλsf̃(s, u(s)) ds. (34)

Now u(0) ≤ u(T ), so one has
u(0)eλT ≤ u(T )eλT . (35)

From (33) and 35) it follows that

eλTu(0) ≤ u(0) +
∫ T

0

eλsf̃(s, u(s)) ds (36)

which further yields

u(0) ≤
∫ T

0

eλs

(eλT − 1)
f̃(s, u(s)) ds (37)

Substituting (37) in (33) we obtain

u(t) ≤
∫ T

0

G(t, s)f̃(s, u(s)) ds

From definitions of the operator T it follows that

u(t) ≤ T u(t),

for all t ∈ J . Hence u ≤ T u.

Thus T satisfies all the conditions of Theorem 2.6 with x0 = u and we apply it to conclude that the operator equation
T x = x has a solution. Consequently the integral equation and the PBVP (21) has a solution x∗ defined on J . Further-
more, the sequence {xn} of successive approximations defined by (29) converges monotonically to x∗. This completes
the proof.

Remark 4.6. The conclusion of Theorem 4.5 also remains true if we replace the hypothesis (H4) with the following one:

(H′4) The PBVP (21) has an upper solution v ∈ C1(J,R).
Example 4.7. Given a closed and bounded interval J = [0, 1] in R, consider the PBVP,

x′(t) = f(t, x(t))− x(t),

x(0) = x(1),

}
(38)

for all t ∈ J, where f : J × R→ R is a continuous function defined by

f(t, x) =


1, if x ≤ 0,

1 +
x

1 + x
, if x > 0.

Here, f̃(t, x) = f(t, x). Clearly, the function f is continuous on J × R. Also f satisfies the hypothesis (H1) with
λ = 1.

Again, since f̃ is bounded on J × R by 2, the hypothesis (H3) holds. Since 1 ≤ f(t, x) < 2 for all x ∈ R, any
function u ∈ C1(J,R) satisfying the linear differential equation

x′(t) + x(t) = 1,

x(0) = x(1),

}
(39)

is a lower solution of the PBVP (38) on J . Because, in this case, we obtain

u′(t) + u(t) ≤ f(t, u(t)),

u(0) = u(1),

}
(40)
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for all t ∈ J . Therefore, solving (39) for the unknown function u, we get

u(t) =

∫ 1

0

G(t, s) ds = 1, t ∈ J. (41)

Similarly, any function v ∈ C1(J,R) satisfying the linear differential equation

x′(t) + x(t) = 2,

x(0) = x(1),

}
(42)

is an upper solution of the IVP (38) on J . Solving the differential equation (42) for the unknown function v yields that

u(t) = 2

∫ 1

0

G(t, s) ds = 2, t ∈ J. (43)

Thus all the hypotheses of Theorem 4.5 are satisfied. Hence we apply Theorem 4.5 and conclude that the of PBVP
(38) has a solution x∗ defined on J and the sequence {xn} of successive approximations defined by

xn+1(t) =

∫ 1

0

G(t, s)f(s, xn(s)) ds, (44)

for all t ∈ J , where x0 = 1, converges monotonically to x∗.

Remark 4.8. In view of Remark 4.6, the existence of the solutions x∗ of the PBVP (38) may be obtained under the
assumption of an upper solution v(t) = 2 defined on J and the sequence {xn} defined by (44) with x0 = 2, converges
monotonically to x∗.

5 CONCLUSION
From the foregoing discussion it is clear that unlike Schauder fixed point principle, the proofs of Theorems 3.5 and 4.5 do
not invoke the construction of a non-empty, closed, convex and bounded subset of the Banach space of navigation which
is mapped into itself by the operators related to the given differential equations. The convexity hypothesis is altogether
omitted from the discussion and still we have proved the existence of the solutions for the differential equations considered
in this paper with stronger conclusion. Similarly, unlike the use of Banach fixed point theorem, Theorems 3.5 and 4.5 do
not make any use of any type of Lipschitz condition on the nonlinearity involved in the differential equations (1) and (21),
but even then the algorithms for the solutions of the differential equations (1) and (21) are proved in terms of the Picard’s
iteration scheme. The nature of the convergence of the algorithms is not geometrical and so we are not able to obtain the
rate of convergence of the algorithms to the solutions of the related problems. However, in a way we have been able to
prove the existence results for the IVP (1) and PBVP (21) under much weaker conditions with a stronger conclusion of
the monotone convergence of successive approximations to the solutions than those proved in the existing literature on
nonlinear differential equations.
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