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ABSTRACT: Networks are one of the basic structure in many physical phenomena pertaining to engineering appli-
cations. As a network can be represented by graph which is isomorphic to its adjacency matrix, the study of analysis
of networks involving rate of change with respect to time reduces to the study of graph differential equations and its
associated matrix differential equations. In this paper we develop the method of generalized quasilinearization for graph
differential equations through its associated matrix differential equations.

Keywords: Pseudo simple graph, Graph differential equation, Matrix differential equation, Quasilinearization technique.

2013 Subject Classification: 05C20, 34G20.

1 INTRODUCTION
Any natural or man-made system involves interconnections between its constituents, thus forming a network, which can
be expressed by a graph (D.D.Siljak & J.V. Devi et al., 2008 & 2013). Graphs have been utilized to model organizational
structures in social sciences. It has been noted that the graphs which are static in nature is not suitable for social phe-
nomena whose changes with time are natural. Thus led to the introduction of a dynamic graph and a graph differential
equation(GDE). The introduced concepts were successfully studied stability of complex dynamic systems through its
associated adjacency matrix.

In ( J.V. Devi et al., 2013) the authors proved that the set of all weighted directed simple graphs (DN ,+, .) is
a linear space and the set of all corresponding adjacency matrices (EN ,+, .) is a matrix linear space where ’+’ denotes
matrix addition and ’.’ denotes scalar multiplication using the concepts defined in (D.D.Siljak, 2008). Also they consider
a weighted directed simple graph as basic element and developed the theory. Further, they obtained existence and unique-
ness solutions of a GDE through its associated MDE using the monotone iterative technique. Further, they developed
significant results, the basic concept involved was weighted directed simple graph. Since a simple graph has no loops,
this fact when translated to differential equations frame work there is no way to accommodate the rate of change in the
weight of an edge eij for all i, j and its relation with the weights of other edges including the edge eij for all i, j. This
drawback was handled in (J.V. Devi & R.V.G Ravi Kumar, 2014).

In (J.V. Devi & R.V.G Ravi Kumar, 2014) the authors introduced the concepts of pseudo simple graph and
product of two graphs and further, since there exists an isomorphism between graphs and their adjacency matrices, they
successfully exploited it. A good example , will go along way in support of the theory, they considered the prey predator
problem and developed the corresponding matrix differential equation and showed how the nonlinearity is preserved in
this set up.

In this paper we proposed to obtain a unique solution of the graph differential equation in few steps. In
the first step we converting the GDE to MDE. Next step we develop the generalized quasilinearization for MDE, thus
obtaining a unique solution for the MDE. In the final step we consider the matrix function which is a solution of the MDE
and construct the corresponding graph function which will be a solution of the GDE.

2 PRELIMINARIES
In this section, we give certain definitions,notations,results and preliminary facts related to GDEs that are required in
later.

2.1 Definition : Pseudo simple graph
A simple graph having loops is called as a pseudo simple graph.

Analogous to theory of directed simple graphs developed in ( J.V. Devi et al., 2013) we proceed to develop the
results in this set up. We avoid the details for fear of repetition.

Let v1, v2, ...vN be N verticess,where N is any positive integer. Let DN be the set of all weighted directed pseudo
simple graphs D=(V, E). Then (DN ,+, .) is a linear space w.r.t the operations + and . defined in ( J.V. Devi et al., 2013).

Let the set of all corresponding adjacency matrices be EN . Then (EN ,+, .) is a matrix linear space where ’+’
denotes matrix addition and ’.’ denotes scalar multiplication. With this basic structure defined, the comparison theorems,
existence and uniqueness results of a solution of a MDE and the corresponding GDE follow as in ( J.V. Devi et al., 2013).
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2.2 Definition: Continuous and differentiable matrix function
(1) A matrix function E : I → Rn×n defined by E(t) = (eij(t))N×N is said to be continuous if and only if each entry
eij(t) is continuous for all i, j = 1, 2, . . . , N where eij : I → R.
(2) A continuous matrix function E(t) is said to be differentiable if and only if each entry eij(t) is differentiable for all
i, j = 1, 2, . . . , N . The derivative of E(t) (if exists) is denoted by E′ and is given by E′(t) = (e′ij)N×N .

2.3 Definition : Continuous and differentiable graph function
Let D : I → DN be a graph function and E : I → Rn×n be its associated adjacency matrix function then
(1) D(t) is said to be continuous if and only if E(t) is continuous.
(2) D(t) is said to be differentiable if and only if E(t) is differentiable.

If for any graph D the corresponding adjacency matrix is differentiable then we say that D is differentiable and the
derivative of D(if exists) is denote by D′.

Consider the initial value problem
D′ = G(t,D), D(t0) = D0 (1)

Let E, E0 be adjacency matrices corresponding to any graph D and the initial graph D0.

Then the MDE is given by
E′ = F (t, E), E(t0) = E0 (2)

where F(t,E) is the adjacency matrix function corresponding to G(t,D).

2.4 Definition : Solution of a Matrix Differential Equation
Any continuous differentiable matrix function E(t) is said to be a solution of (2), if and only if it satisfies (2).

2.5 Definition: Solution of a Graph Differential Equation
By a solution of GDE (1) we mean the graph function D(t) corresponding to the matrix function E(t) of the MDE (2).

In order to obtain a unique solution of (1) we use the corresponding adjacency MDE. As there exists an isomorphism
between graphs and matrices, the solution obtained for the MDE will be a solution of the corresponding GDE.

2.6 Definition: Convergence of a Matrix
Let {En} be a sequence of matrices and E be a matrix then En converges to E if and only if given ε > 0 there exist
n ≥ N such that ||En − E|| ≤ ε for all n ≥ N. This means enij → eij for all 1 ≤ i, j ≤ N

2.7 Definition
Consider two matrices A and B of order N. We say that A ≤ B if and only if aij ≤ bij for all i, j = 1, 2, . . . , N .

With the necessary preliminaries in place, we proceed to the next section to develop the main results.

3 Generalized Quasilinearization for Matrix Differential Equations
In this section we shall construct a monotone sequence that converges quadratic to the solution of

E′ = F(t,E), E(t0) = E0 (3)

where F ∈ C[I× Rn×n,Rn×n].

First we begin with the definition of lower and upper solutions for (3)

3.1 Definition:
Let V0,W0 ∈ C1[I,Rn×n]. Then
(i) V is said to be lower solution of a matrix differential equation if and only if

V′0 ≤ F(t,V0), V0(t0) ≤ E0 (4)

and
(ii) W is said to be upper solution of a matrix differential equation if and only if

W′0 ≥ F(t,W0), W0(t0) ≥ E0 (5)

respectively.



Generalized Quasilinearization for Graph Differential Equations through its Associated Matrix Differential Equations 73

3.2 Definition:
Let F ∈ C[I × Rn×n,Rn×n] such that F (t,X) = [fij(t,X)], where fij : I × Rn×n → R is differentiable w.r.t Xij .
Then the partial derivative of F (t, Y ) w.r.t X is denoted by FX(t, Y ) and is defined as follows.

FX(t, Y ) =



∑
i,j f11xi,j(t,Y) . . .

∑
i,j f1nxi,j(t,Y)∑

i,j f21xi,j(t,Y) . . .
∑

i,j f2nxi,j(t,Y)

.

.

.∑
i,j fn1xi,j(t,Y) . . .

∑
i,j fnnxi,j(t,Y)



We first state a couple of Lemmas that are necessary in the proof of our main theorem.

3.3 Lemma
Let P ∈ C1[I,Rn×n] such that P ′ ≤MP and P (t0) ≤ 0 where M ∈ Rn×n. Then P (t) ≤ 0

Proof. Consider the linear matrix differential equation

P ′(t) ≤MP, P (t0) ≤ 0

whose unique solution is given by

P (t) ≤ eM(t−t0)P (t0)

Then by hypothesis, we get, P (t) ≤ 0

3.4 Lemma
Let
(i) V0(t) and W0(t) be lower and upper solutions of the matrix differential equation (3) and

(ii) V1(t) and W1(t) respectively be the unique solutions of the linear non-homogeneous matrix differential
equations

V′1 = F(t,V0) + FX(t,V0)(V1 −V0), V1(t0) = E0 (6)

and W′1 = F(t,W0) + FX(t,V0)(W1 −W0), W1(t0) = E0 (7)

Then V0(t) ≤ V1(t) ≤W1(t) ≤W0(t) on I

Proof :

Suppose that V0(t) is a lower solution of (3) and V (t) be the unique solution of (6).
Set P = V0 − V1, t ∈ [t0,T]. Then

P′ ≤ F(t,V0)− [F(t,V0) + FX(t,V0)(V1 −V0)]
≤ FX(t,V0)P ≤ MP

and P(t0) ≤ V0(t0)−V1(t0) ≤ 0

Using Lemma 3.3 we get P (t) ≤ 0. Thus V0 ≤ V1 on I.

Now we show that W(t) ≤W0(t), t ∈ [t0,T].
Suppose that W0(t) is a upper solution of (3) and W(t) be the unique solution of (7).
Set P = W1 − W0, t ∈ [t0,T]. Then

P′ ≤ F(t,W0) + FX(t,V0)(W1 −W0)− F(t,W0)
≤ FX(t,V0)P ≤ MP

and P(t0) ≤W1(t0)−W0(t0) ≤ 0

By Lemma 3.3, P (t) ≤ 0. Hence W1 ≤W0 on I.

Finally we show that V1(t) ≤W1(t), t ∈ [t0,T]. Set P(t) = V1(t)−W1(t), t ∈ [t0,T]. Then
P′(t) ≤ F(t,V0) + FX(t,V0)(V1 −V0)− [F(t,W0) + FX(t,V0)(W1 −W0)]

≤ F(t,V0)− F(t,W0) + FX(t,V0)[V1 −V0 −W1 +W0]
≤ F(t, ξ)(V0 −W0) + FX(t,V0)[V1 −V0 −W1 +W0]
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≤ FX(t,V0)(V0 −W0) + FX(t,V0)[V1 −V0 −W1 +W0]
≤ FX(t,V0)P ≤ MP

and P(t0) ≤ V1(t0)−W1(t0) ≤ 0.
Using Lemma 3.3,P (t) ≤ 0. Thus V1(t) ≤W1(t), t ∈ [t0,T].
Hence V0(t) ≤ V1(t) ≤W1(t) ≤W0(t) on I.

3.5 Theorem
Assume that
(i) V0,W0 ∈ C1[I,Rn×n] be respectively lower and upper solutions of the IVP for the matrix differential equation (3)
such that V0(t) ≤W0(t), t ∈ I
(ii) Let F ∈ C[I×Rn×n,Rn×n] and FX(t,X) exists, such that F(t,X) ≥ F(t,Y)+FX(t,Y)(X−Y), for X ≥ Y and
| FX(t,X)− FX(t,Y) |≤ L | X−Y |, L ∈ Rn×n.

Then there exist monotone sequences {Vn},{Wn} such that Vn → ρ,Wn → R as n → ∞ uniformly and monotoni-
cally to the unique solution ρ = R = X of IVP (3) on [t0, T ] and the convergence is quadratic.

Proof:
Consider the linear matrix differential equation given by,

V′k+1 = F(t,Vk) + FX(t,Vk)(Vk+1 −Vk), Vk+1(t0) = X0. (8)

and
W′k+1 = F(t,Wk) + FX(t,Vk)(Wk+1 −Wk), Wk+1(t0) = X0. (9)

Then it follows from Lemma 3.3 that the linear matrix differential equations (8) and (9) have unique solutions Vk+1

and Wk+1 respectively, whenever Vk and Wk are known lower and upper solutions of the IVP (3). Further, by setting
k = 0 in the above system, we apply Lemma-3.4 to obtain that V0 ≤ V1 ≤W1 ≤W0 on [t0, T ]. We now claim that

V0 ≤ V1 ≤ ... ≤ Vk ≤ Vk+1 ≤Wk+1 ≤Wk... ≤W1 ≤W0 on [t0,T]. (10)

Since the result is already proved for n = 0, we assume that the result holds for n = k and prove it for n = k + 1, this
means that

Vk−1 ≤ Vk ≤Wk ≤Wk−1 (11)

where Vk and Wk are solutions of the IVP’s

V′k = F(t,Vk−1) + FX(t,Vk)(Vk −Vk−1), Vk(t0) = X0. (12)

and
W′k = F(t,Wk−1) + FX(t,Vk)(Wk −Wk−1), Wk(t0) = X0. (13)

Since Vk is a lower solution of (3). Now by using Lemma 3.3, we obtain that Vk+1 is a unique solution of (8) on [t0, T ]
and hence an application of the Lemma 3.4 yields that Vk ≤ Vk+1 on [t0, T ]. Similarly, it can be shown that Wk is
an upper solution of (3) and by Lemma 3.3, we obtain that Wk+1 is a unique solution of (9) on [t0, T ] and hence an
application of the Lemma 3.4 gives that Wk+1 ≤ Wk on [t0, T ]. Further, working in the lines of the Lemma 3.4, we
obtain that Vk+1 ≤Wk+1 on [t0, T ].

Hence by the principle of mathematical induction, we deduce the relation (10) and our claim holds. Clearly the
sequences are uniformly bounded by relation (10), this also yields that the sequences {Vn} and {Wn} are also uniformly
bounded. As a result the sequences {Vn} and {Wn} are equicontinuous on [t0, T ] and therefore by using Ascoli-Arzela
Theorem, there exists subsequences {Vnk},{Wnk} that converges uniformly on [t0, T ]. In view of (10) it also follows
that the entire sequences {Vn},{Wn} converges uniformly to ρ(t) and R(t) respectively.
Now we can show that ρ and R are solutions of the IVP(3). Since FX exists and is bounded on [t0, T ], we obtain that F
is Lipschitz and hence the solution is unique. Thus ρ = X = R on [t0, T ]. Next, our aim is to show that this convergence
is quadratic.
Set Pn+1 = X−Vn+1. Then

P′n+1 = F(t,X)− F(t,Vn)− FX(t,Vn)(Vn+1 −Vn)
≤ FX(t, ξ)Pn − [FX(t,Vn)(−Pn+1 + Pn) ≤ LP2

n +MPn+1 where | FX(t,Vn) |≤ M

P′n+1 ≤ L | Pn |2 +MPn+1, Pn+1(0) ≤ 0

Now using the solution of the linear non homogeneous matrix differential equation, we get

Pn+1(t) ≤ eM(t−t0) Pn+1(0) +
∫ t

t0
Lp2

n eM(s−to)ds

||Pn+1(t)|| ≤ L||Pn||2
∫ t

t0
eM(s−to)ds

≤ L
M
||Pn||2 e(t−to)
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≤ L
M
||Pn||2 e(T−to)

≤ λ ||Pn||2 where λ = L
M

e(T−to)

||X − Vn+1|| ≤ λ ||X − Vn||2

Hence the quadratic convergence of the sequence {Vn(t)} is proved. Similarly, we can prove the quadratic con-
vergence of the sequence {Wn(t)} to the solution X(t) of IVP (3). Hence the proof of our main theorem is
completed.

3.6 Theorem
Consider the GDE (1) and its corresponding MDE is (2). Also assume that F(t,E) be the adjacency matrix
corresponding to G(t,D) such that F satisfies F(t,X) ≥ F(t,Y) + FX(t,Y)(X − Y), for X ≥ Y and
| FX(t,X)− FX(t,Y) |≤ L | X−Y |, L ∈ Rn×n. Then their exists a unique solution for the GDE (1).

Proof.
Since F satisfies the hypothesis of Theorem 3.5, the MDE (2) has unique solution say E(t).
Then the corresponding graph function D(t) is the unique solution of the GDE (1).
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